David W Cadotte, Anoushka Singh, Michael G Fehlings
{"title":"脊髓损伤手术减压时机的选择。","authors":"David W Cadotte, Anoushka Singh, Michael G Fehlings","doi":"10.3410/M2-67","DOIUrl":null,"url":null,"abstract":"<p><p>Research into the pathophysiological mechanisms of spinal cord injury (SCI) has resulted in a classification scheme of primary and secondary injury. Primary injury refers to the destructive nature of the initial impact and the subsequent shearing, penetrating, and compressive forces that injure the delicate neural tissue. Secondary injury refers to a complex array of pathophysiologial processes - including ischemia, inflammation, excitotoxicity, and oxidative cell damage - that contribute to the ultimate loss of neural tissue. While our understanding of secondary mechanisms improves with continued research, novel treatments for SCI are currently being developed with a foundation rooted in halting deleterious secondary mechanisms. In this article, we will review the current evidence for surgical decompression as a treatment for SCI. Emerging evidence and a growing consensus among surgeons are in support of early surgical intervention to help minimize the secondary damage caused by compression of the spinal cord after trauma.</p>","PeriodicalId":88480,"journal":{"name":"F1000 medicine reports","volume":"2 ","pages":"67"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a5/a6/medrep-02-67.PMC2990468.pdf","citationCount":"19","resultStr":"{\"title\":\"The timing of surgical decompression for spinal cord injury.\",\"authors\":\"David W Cadotte, Anoushka Singh, Michael G Fehlings\",\"doi\":\"10.3410/M2-67\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Research into the pathophysiological mechanisms of spinal cord injury (SCI) has resulted in a classification scheme of primary and secondary injury. Primary injury refers to the destructive nature of the initial impact and the subsequent shearing, penetrating, and compressive forces that injure the delicate neural tissue. Secondary injury refers to a complex array of pathophysiologial processes - including ischemia, inflammation, excitotoxicity, and oxidative cell damage - that contribute to the ultimate loss of neural tissue. While our understanding of secondary mechanisms improves with continued research, novel treatments for SCI are currently being developed with a foundation rooted in halting deleterious secondary mechanisms. In this article, we will review the current evidence for surgical decompression as a treatment for SCI. Emerging evidence and a growing consensus among surgeons are in support of early surgical intervention to help minimize the secondary damage caused by compression of the spinal cord after trauma.</p>\",\"PeriodicalId\":88480,\"journal\":{\"name\":\"F1000 medicine reports\",\"volume\":\"2 \",\"pages\":\"67\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a5/a6/medrep-02-67.PMC2990468.pdf\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"F1000 medicine reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3410/M2-67\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"F1000 medicine reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3410/M2-67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The timing of surgical decompression for spinal cord injury.
Research into the pathophysiological mechanisms of spinal cord injury (SCI) has resulted in a classification scheme of primary and secondary injury. Primary injury refers to the destructive nature of the initial impact and the subsequent shearing, penetrating, and compressive forces that injure the delicate neural tissue. Secondary injury refers to a complex array of pathophysiologial processes - including ischemia, inflammation, excitotoxicity, and oxidative cell damage - that contribute to the ultimate loss of neural tissue. While our understanding of secondary mechanisms improves with continued research, novel treatments for SCI are currently being developed with a foundation rooted in halting deleterious secondary mechanisms. In this article, we will review the current evidence for surgical decompression as a treatment for SCI. Emerging evidence and a growing consensus among surgeons are in support of early surgical intervention to help minimize the secondary damage caused by compression of the spinal cord after trauma.