{"title":"中枢神经系统祖细胞的分离、培养和分化。","authors":"Scott R Hutton, Larysa H Pevny","doi":"10.1101/pdb.prot5077","DOIUrl":null,"url":null,"abstract":"<p><p>INTRODUCTIONThe ability to prospectively identify and characterize neural progenitor cells in vivo has been difficult due to a lack of cell-surface markers specific for these cell types. A widely used in vitro culture method, known as the Neurosphere Assay (NSA), has provided a means to retrospectively identify neural progenitor cells as well as to determine both their self-renewal capacity and their ability to generate the three primary cell types of the nervous system: neurons, astrocytes, and oligodendrocytes. Today, combined with the establishment of multiple transgenic mouse strains expressing fluorescent markers and advances in cell isolation techniques such as fluorescence-activated cell sorting (FACS), the NSA provides a powerful system to prospectively elucidate neural progenitor characteristics and functions. Here we describe methods for the isolation, culture, and differentiation of neural progenitors from the developing mouse and adult cortex.</p>","PeriodicalId":10835,"journal":{"name":"CSH protocols","volume":" ","pages":"pdb.prot5077"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1101/pdb.prot5077","citationCount":"29","resultStr":"{\"title\":\"Isolation, culture, and differentiation of progenitor cells from the central nervous system.\",\"authors\":\"Scott R Hutton, Larysa H Pevny\",\"doi\":\"10.1101/pdb.prot5077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>INTRODUCTIONThe ability to prospectively identify and characterize neural progenitor cells in vivo has been difficult due to a lack of cell-surface markers specific for these cell types. A widely used in vitro culture method, known as the Neurosphere Assay (NSA), has provided a means to retrospectively identify neural progenitor cells as well as to determine both their self-renewal capacity and their ability to generate the three primary cell types of the nervous system: neurons, astrocytes, and oligodendrocytes. Today, combined with the establishment of multiple transgenic mouse strains expressing fluorescent markers and advances in cell isolation techniques such as fluorescence-activated cell sorting (FACS), the NSA provides a powerful system to prospectively elucidate neural progenitor characteristics and functions. Here we describe methods for the isolation, culture, and differentiation of neural progenitors from the developing mouse and adult cortex.</p>\",\"PeriodicalId\":10835,\"journal\":{\"name\":\"CSH protocols\",\"volume\":\" \",\"pages\":\"pdb.prot5077\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1101/pdb.prot5077\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CSH protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/pdb.prot5077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSH protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/pdb.prot5077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Isolation, culture, and differentiation of progenitor cells from the central nervous system.
INTRODUCTIONThe ability to prospectively identify and characterize neural progenitor cells in vivo has been difficult due to a lack of cell-surface markers specific for these cell types. A widely used in vitro culture method, known as the Neurosphere Assay (NSA), has provided a means to retrospectively identify neural progenitor cells as well as to determine both their self-renewal capacity and their ability to generate the three primary cell types of the nervous system: neurons, astrocytes, and oligodendrocytes. Today, combined with the establishment of multiple transgenic mouse strains expressing fluorescent markers and advances in cell isolation techniques such as fluorescence-activated cell sorting (FACS), the NSA provides a powerful system to prospectively elucidate neural progenitor characteristics and functions. Here we describe methods for the isolation, culture, and differentiation of neural progenitors from the developing mouse and adult cortex.