栉水母(栉水母):基础后生动物进化和发展的模型。

CSH protocols Pub Date : 2008-11-01 DOI:10.1101/pdb.emo106
Kevin Pang, Mark Q Martindale
{"title":"栉水母(栉水母):基础后生动物进化和发展的模型。","authors":"Kevin Pang,&nbsp;Mark Q Martindale","doi":"10.1101/pdb.emo106","DOIUrl":null,"url":null,"abstract":"<p><p>INTRODUCTIONCtenophores, or comb jellies, are a group of marine organisms whose unique biological features and phylogenetic placement make them a key taxon for understanding animal evolution. These gelatinous creatures are clearly distinct from cnidarian medusae (i.e., jellyfish). Key features present in the ctenophore body plan include biradial symmetry, an oral-aboral axis delimited by a mouth and an apical sensory organ, two tentacles, eight comb rows composed of interconnected cilia, and thick mesoglea. Other morphological features include definitive muscle cells, a nerve net, basal lamina, a sperm acrosome, and light-producing photocytes. Aspects of their development made them attractive to experimental embryologists as early as the 19th century. Recently, because of their role as an invasive species, studies on their role in ecology and fisheries-related fields have increased. Although the phylogenetic placement of ctenophores with respect to other animals has proven difficult, it is clear that, along with poriferans, placozoans, and cnidarians, ctenophores are one of the earliest diverging extant animal groups. It is important to determine if some of the complex features of ctenophores are examples of convergence or if they were lost in other animal branches. Because ctenophores are amenable to modern technical approaches, they could prove to be a highly useful emerging model.</p>","PeriodicalId":10835,"journal":{"name":"CSH protocols","volume":" ","pages":"pdb.emo106"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1101/pdb.emo106","citationCount":"37","resultStr":"{\"title\":\"Comb jellies (ctenophora): a model for Basal metazoan evolution and development.\",\"authors\":\"Kevin Pang,&nbsp;Mark Q Martindale\",\"doi\":\"10.1101/pdb.emo106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>INTRODUCTIONCtenophores, or comb jellies, are a group of marine organisms whose unique biological features and phylogenetic placement make them a key taxon for understanding animal evolution. These gelatinous creatures are clearly distinct from cnidarian medusae (i.e., jellyfish). Key features present in the ctenophore body plan include biradial symmetry, an oral-aboral axis delimited by a mouth and an apical sensory organ, two tentacles, eight comb rows composed of interconnected cilia, and thick mesoglea. Other morphological features include definitive muscle cells, a nerve net, basal lamina, a sperm acrosome, and light-producing photocytes. Aspects of their development made them attractive to experimental embryologists as early as the 19th century. Recently, because of their role as an invasive species, studies on their role in ecology and fisheries-related fields have increased. Although the phylogenetic placement of ctenophores with respect to other animals has proven difficult, it is clear that, along with poriferans, placozoans, and cnidarians, ctenophores are one of the earliest diverging extant animal groups. It is important to determine if some of the complex features of ctenophores are examples of convergence or if they were lost in other animal branches. Because ctenophores are amenable to modern technical approaches, they could prove to be a highly useful emerging model.</p>\",\"PeriodicalId\":10835,\"journal\":{\"name\":\"CSH protocols\",\"volume\":\" \",\"pages\":\"pdb.emo106\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1101/pdb.emo106\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CSH protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/pdb.emo106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSH protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/pdb.emo106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

栉水母是一类海洋生物,其独特的生物学特征和系统发育位置使其成为理解动物进化的关键分类群。这些胶状生物明显不同于刺胞水母(即水母)。栉水母体表的主要特征包括双向对称,由嘴和顶端感觉器官划分的口-口轴,两条触须,由相互连接的纤毛组成的八排梳状体,以及厚的中胶层。其他形态特征包括确定的肌肉细胞、神经网、基底层、精子顶体和产生光的光细胞。早在19世纪,它们的发展就吸引了实验胚胎学家。近年来,由于其入侵物种的作用,对其在生态学和渔业相关领域的研究越来越多。尽管将栉水母与其他动物的系统发育位置进行比较已被证明是困难的,但很明显,与多孔动物、placozoa和刺胞动物一样,栉水母是现存最早分化的动物群体之一。重要的是要确定栉水母的一些复杂特征是趋同的例子,还是它们在其他动物分支中丢失了。由于栉水母可以适应现代技术手段,因此它们可能被证明是一种非常有用的新兴模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comb jellies (ctenophora): a model for Basal metazoan evolution and development.

INTRODUCTIONCtenophores, or comb jellies, are a group of marine organisms whose unique biological features and phylogenetic placement make them a key taxon for understanding animal evolution. These gelatinous creatures are clearly distinct from cnidarian medusae (i.e., jellyfish). Key features present in the ctenophore body plan include biradial symmetry, an oral-aboral axis delimited by a mouth and an apical sensory organ, two tentacles, eight comb rows composed of interconnected cilia, and thick mesoglea. Other morphological features include definitive muscle cells, a nerve net, basal lamina, a sperm acrosome, and light-producing photocytes. Aspects of their development made them attractive to experimental embryologists as early as the 19th century. Recently, because of their role as an invasive species, studies on their role in ecology and fisheries-related fields have increased. Although the phylogenetic placement of ctenophores with respect to other animals has proven difficult, it is clear that, along with poriferans, placozoans, and cnidarians, ctenophores are one of the earliest diverging extant animal groups. It is important to determine if some of the complex features of ctenophores are examples of convergence or if they were lost in other animal branches. Because ctenophores are amenable to modern technical approaches, they could prove to be a highly useful emerging model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tryptic Soy Broth with 2% (w/v) NaCl Tryptic Soy Agar with 2% (w/v) NaCl Glycine Solution (1×) Tryptic Soy Broth (TSB) Buffered Sperm-Motility Inhibiting Solution (BSMIS), 1×
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1