{"title":"降低抗凝活性的肝素可减少心肌再灌注损伤。","authors":"William H Barry, Thomas P Kennedy","doi":"10.2174/157489011795933855","DOIUrl":null,"url":null,"abstract":"<p><p>Heparin which is desulfated at the 2-O and 3-O positions (ODSH) has reduced anti-coagulant properties, and reduced interaction with heparin antibodies. Because of the reduced anti-coagulant effect, ODSH can be safely administered to animals and humans intravenously at doses up to 20 mg/kg, resulting in a serum concentration of up to 250µg/ml. Administration of ODSH causes a 35% reduction in infarct size in dogs and pigs subjected to coronary artery occlusion and reperfusion when given 5 min before reperfusion. ODSH has anti-inflamatory effects, manifest as a decrease in neutrophil infiltration into ischemic tissue at high doses, but this effect does not entirely account for the reduction in infarct size. ODSH decreases Na(+) and Ca(2+) loading in isolated cardiac myocytes subjected to simulated ischemia. This effect appears due to an ODSH-induced reduction in an enhanced Na(+) influx via the Na channel in the membrane of cardiac myocyes caused by oxygen radicals generated during ischemia and reperfusion. Reduction in Na(+) influx decreases Ca(2+) loading by reducing Ca2(+) influx via Na/Ca exchange, thus reducing Ca(2+) - dependent reperfusion injury. ODSH does not appear to interact with antibodies to the heparin/platelet factor 4 complex, and does not cause heparin-induced thrombocytopenia. Because of these therapeutic and safety considerations, ODSH would appear to be a promising heparin derivative for prevention of reperfusion injury in humans undergoing thrombolytic or catheter-based reperfusion for acute myocardial infarction. The review article discussed the use of heparin and the discussion of some of the important patents, including: US6489311; US7478358; PCTUS2008070836 and PCTUS2009037836.</p>","PeriodicalId":20905,"journal":{"name":"Recent patents on cardiovascular drug discovery","volume":"6 2","pages":"148-57"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2174/157489011795933855","citationCount":"6","resultStr":"{\"title\":\"Heparins with reduced anti-coagulant activity reduce myocardial reperfusion injury.\",\"authors\":\"William H Barry, Thomas P Kennedy\",\"doi\":\"10.2174/157489011795933855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heparin which is desulfated at the 2-O and 3-O positions (ODSH) has reduced anti-coagulant properties, and reduced interaction with heparin antibodies. Because of the reduced anti-coagulant effect, ODSH can be safely administered to animals and humans intravenously at doses up to 20 mg/kg, resulting in a serum concentration of up to 250µg/ml. Administration of ODSH causes a 35% reduction in infarct size in dogs and pigs subjected to coronary artery occlusion and reperfusion when given 5 min before reperfusion. ODSH has anti-inflamatory effects, manifest as a decrease in neutrophil infiltration into ischemic tissue at high doses, but this effect does not entirely account for the reduction in infarct size. ODSH decreases Na(+) and Ca(2+) loading in isolated cardiac myocytes subjected to simulated ischemia. This effect appears due to an ODSH-induced reduction in an enhanced Na(+) influx via the Na channel in the membrane of cardiac myocyes caused by oxygen radicals generated during ischemia and reperfusion. Reduction in Na(+) influx decreases Ca(2+) loading by reducing Ca2(+) influx via Na/Ca exchange, thus reducing Ca(2+) - dependent reperfusion injury. ODSH does not appear to interact with antibodies to the heparin/platelet factor 4 complex, and does not cause heparin-induced thrombocytopenia. Because of these therapeutic and safety considerations, ODSH would appear to be a promising heparin derivative for prevention of reperfusion injury in humans undergoing thrombolytic or catheter-based reperfusion for acute myocardial infarction. The review article discussed the use of heparin and the discussion of some of the important patents, including: US6489311; US7478358; PCTUS2008070836 and PCTUS2009037836.</p>\",\"PeriodicalId\":20905,\"journal\":{\"name\":\"Recent patents on cardiovascular drug discovery\",\"volume\":\"6 2\",\"pages\":\"148-57\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2174/157489011795933855\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent patents on cardiovascular drug discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/157489011795933855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent patents on cardiovascular drug discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/157489011795933855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Heparins with reduced anti-coagulant activity reduce myocardial reperfusion injury.
Heparin which is desulfated at the 2-O and 3-O positions (ODSH) has reduced anti-coagulant properties, and reduced interaction with heparin antibodies. Because of the reduced anti-coagulant effect, ODSH can be safely administered to animals and humans intravenously at doses up to 20 mg/kg, resulting in a serum concentration of up to 250µg/ml. Administration of ODSH causes a 35% reduction in infarct size in dogs and pigs subjected to coronary artery occlusion and reperfusion when given 5 min before reperfusion. ODSH has anti-inflamatory effects, manifest as a decrease in neutrophil infiltration into ischemic tissue at high doses, but this effect does not entirely account for the reduction in infarct size. ODSH decreases Na(+) and Ca(2+) loading in isolated cardiac myocytes subjected to simulated ischemia. This effect appears due to an ODSH-induced reduction in an enhanced Na(+) influx via the Na channel in the membrane of cardiac myocyes caused by oxygen radicals generated during ischemia and reperfusion. Reduction in Na(+) influx decreases Ca(2+) loading by reducing Ca2(+) influx via Na/Ca exchange, thus reducing Ca(2+) - dependent reperfusion injury. ODSH does not appear to interact with antibodies to the heparin/platelet factor 4 complex, and does not cause heparin-induced thrombocytopenia. Because of these therapeutic and safety considerations, ODSH would appear to be a promising heparin derivative for prevention of reperfusion injury in humans undergoing thrombolytic or catheter-based reperfusion for acute myocardial infarction. The review article discussed the use of heparin and the discussion of some of the important patents, including: US6489311; US7478358; PCTUS2008070836 and PCTUS2009037836.