{"title":"用外围定量计算机断层扫描测量小动物体脂和肝脂。","authors":"Tim R Nagy, Maria S Johnson","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Peripheral quantitative computed tomography (pQCT) was used to determine percent body fat in mice, and relative liver fat in lemmings fasted for 0, 6, 12 or 18 hours to induce a wide range of liver fat content. Accuracy of the pQCT was determined by comparing pQCT-derived fat to that from chemical extraction using 30 male mice (whole body) and 26 female lemmings (liver only). To determine whether pQCT could measure changes in liver fat (%) in live animals, two groups of lemmings were scanned on 4 consecutive days under anesthesia. Controls (n = 3) had ad libitum access to food, whereas the fasted group (n = 5) was deprived of food for 18 hr before being measured on day 2 and then refed. The coefficient of variation (CV) for determining percent body fat in mice using the pQCT was 3.9% (±1.8 SD). Percent body fat determined by pQCT significantly overestimated percent fat as measured by chemical extraction (14.5 ± 3.2 vs 12.3 ± 2.9% respectively, P < 0.01, mean ± SD). However, percent body fat by pQCT was highly related to chemical extraction percent fat (r = 0.95, P < 0.001). The liver attenuation values from pQCT were highly related to percent liver fat (r=0.98, P<0.001) in lemmings. The technique showed excellent precision with a CV of 0.3 ± 0.1%. The two groups (control vs fasted) did not differ in their percent liver fat on day 1 (5.4% vs 5.8%). On day 2 the fasted group had a significantly higher percent liver fat than controls (5.9% vs 17.3%; p<0.05). Following refeeding, there were no significant group differences in percent liver fat on days 3 and 4. Our data indicate that pQCT has good accuracy and precision for determining percent body fat, and liver fat in small animals and can be used to track changes in liver fat over time.</p>","PeriodicalId":87474,"journal":{"name":"International journal of body composition research","volume":"1 4","pages":"155-160"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3086261/pdf/nihms286210.pdf","citationCount":"0","resultStr":"{\"title\":\"Measurement of Body and Liver Fat in Small Animals Using Peripheral Quantitative Computed Tomography.\",\"authors\":\"Tim R Nagy, Maria S Johnson\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Peripheral quantitative computed tomography (pQCT) was used to determine percent body fat in mice, and relative liver fat in lemmings fasted for 0, 6, 12 or 18 hours to induce a wide range of liver fat content. Accuracy of the pQCT was determined by comparing pQCT-derived fat to that from chemical extraction using 30 male mice (whole body) and 26 female lemmings (liver only). To determine whether pQCT could measure changes in liver fat (%) in live animals, two groups of lemmings were scanned on 4 consecutive days under anesthesia. Controls (n = 3) had ad libitum access to food, whereas the fasted group (n = 5) was deprived of food for 18 hr before being measured on day 2 and then refed. The coefficient of variation (CV) for determining percent body fat in mice using the pQCT was 3.9% (±1.8 SD). Percent body fat determined by pQCT significantly overestimated percent fat as measured by chemical extraction (14.5 ± 3.2 vs 12.3 ± 2.9% respectively, P < 0.01, mean ± SD). However, percent body fat by pQCT was highly related to chemical extraction percent fat (r = 0.95, P < 0.001). The liver attenuation values from pQCT were highly related to percent liver fat (r=0.98, P<0.001) in lemmings. The technique showed excellent precision with a CV of 0.3 ± 0.1%. The two groups (control vs fasted) did not differ in their percent liver fat on day 1 (5.4% vs 5.8%). On day 2 the fasted group had a significantly higher percent liver fat than controls (5.9% vs 17.3%; p<0.05). Following refeeding, there were no significant group differences in percent liver fat on days 3 and 4. Our data indicate that pQCT has good accuracy and precision for determining percent body fat, and liver fat in small animals and can be used to track changes in liver fat over time.</p>\",\"PeriodicalId\":87474,\"journal\":{\"name\":\"International journal of body composition research\",\"volume\":\"1 4\",\"pages\":\"155-160\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3086261/pdf/nihms286210.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of body composition research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of body composition research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
外周定量计算机断层扫描(pQCT)用于测定小鼠体脂百分比,以及禁食0、6、12或18小时的旅鼠的相对肝脏脂肪,以诱导大范围的肝脏脂肪含量。利用30只雄性小鼠(全身)和26只雌性旅鼠(仅肝脏),将pQCT提取的脂肪与化学提取的脂肪进行比较,从而确定pQCT的准确性。为了确定pQCT是否可以测量活体动物肝脏脂肪(%)的变化,在麻醉下连续4天对两组旅鼠进行扫描。对照组(n = 3)可以自由进食,而禁食组(n = 5)被剥夺食物18小时,然后在第2天进行测量,然后重新喂食。使用pQCT测定小鼠体脂百分比的变异系数(CV)为3.9%(±1.8 SD)。pQCT测定的体脂百分比显著高于化学提取法测定的体脂百分比(分别为14.5±3.2 vs 12.3±2.9%,P < 0.01, mean±SD)。然而,pQCT测定的体脂百分比与化学提取脂肪百分比高度相关(r = 0.95, P < 0.001)。pQCT的肝脏衰减值与肝脏脂肪百分比高度相关(r=0.98, P
Measurement of Body and Liver Fat in Small Animals Using Peripheral Quantitative Computed Tomography.
Peripheral quantitative computed tomography (pQCT) was used to determine percent body fat in mice, and relative liver fat in lemmings fasted for 0, 6, 12 or 18 hours to induce a wide range of liver fat content. Accuracy of the pQCT was determined by comparing pQCT-derived fat to that from chemical extraction using 30 male mice (whole body) and 26 female lemmings (liver only). To determine whether pQCT could measure changes in liver fat (%) in live animals, two groups of lemmings were scanned on 4 consecutive days under anesthesia. Controls (n = 3) had ad libitum access to food, whereas the fasted group (n = 5) was deprived of food for 18 hr before being measured on day 2 and then refed. The coefficient of variation (CV) for determining percent body fat in mice using the pQCT was 3.9% (±1.8 SD). Percent body fat determined by pQCT significantly overestimated percent fat as measured by chemical extraction (14.5 ± 3.2 vs 12.3 ± 2.9% respectively, P < 0.01, mean ± SD). However, percent body fat by pQCT was highly related to chemical extraction percent fat (r = 0.95, P < 0.001). The liver attenuation values from pQCT were highly related to percent liver fat (r=0.98, P<0.001) in lemmings. The technique showed excellent precision with a CV of 0.3 ± 0.1%. The two groups (control vs fasted) did not differ in their percent liver fat on day 1 (5.4% vs 5.8%). On day 2 the fasted group had a significantly higher percent liver fat than controls (5.9% vs 17.3%; p<0.05). Following refeeding, there were no significant group differences in percent liver fat on days 3 and 4. Our data indicate that pQCT has good accuracy and precision for determining percent body fat, and liver fat in small animals and can be used to track changes in liver fat over time.