复杂听觉环境中的声场。

Trends in Amplification Pub Date : 2011-09-01 Epub Date: 2011-06-15 DOI:10.1177/1084713811408348
Michael Vorländer
{"title":"复杂听觉环境中的声场。","authors":"Michael Vorländer","doi":"10.1177/1084713811408348","DOIUrl":null,"url":null,"abstract":"<p><p>The conditions of sound fields used in research, especially testing and fitting of hearing aids, are usually simplified or reduced to fundamental physical fields, such as the free or the diffuse sound field. The concepts of such ideal conditions are easily introduced in theoretical and experimental investigations and in models for directional microphones, for example. When it comes to real-world application of hearing aids, however, the field conditions are more complex with regard to specific stationary and transient properties in room transfer functions and the corresponding impulse responses and binaural parameters. Sound fields can be categorized in outdoor rural and urban and indoor environments. Furthermore, sound fields in closed spaces of various sizes and shapes and in situations of transport in vehicles, trains, and aircrafts are compared with regard to the binaural signals. In laboratory tests, sources of uncertainties are individual differences in binaural cues and too less controlled sound field conditions. Furthermore, laboratory sound fields do not cover the variety of complex sound environments. Spatial audio formats such as higher-order ambisonics are candidates for sound field references not only in room acoustics and audio engineering but also in audiology.</p>","PeriodicalId":48972,"journal":{"name":"Trends in Amplification","volume":"15 3","pages":"106-15"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1084713811408348","citationCount":"5","resultStr":"{\"title\":\"Sound fields in complex listening environments.\",\"authors\":\"Michael Vorländer\",\"doi\":\"10.1177/1084713811408348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The conditions of sound fields used in research, especially testing and fitting of hearing aids, are usually simplified or reduced to fundamental physical fields, such as the free or the diffuse sound field. The concepts of such ideal conditions are easily introduced in theoretical and experimental investigations and in models for directional microphones, for example. When it comes to real-world application of hearing aids, however, the field conditions are more complex with regard to specific stationary and transient properties in room transfer functions and the corresponding impulse responses and binaural parameters. Sound fields can be categorized in outdoor rural and urban and indoor environments. Furthermore, sound fields in closed spaces of various sizes and shapes and in situations of transport in vehicles, trains, and aircrafts are compared with regard to the binaural signals. In laboratory tests, sources of uncertainties are individual differences in binaural cues and too less controlled sound field conditions. Furthermore, laboratory sound fields do not cover the variety of complex sound environments. Spatial audio formats such as higher-order ambisonics are candidates for sound field references not only in room acoustics and audio engineering but also in audiology.</p>\",\"PeriodicalId\":48972,\"journal\":{\"name\":\"Trends in Amplification\",\"volume\":\"15 3\",\"pages\":\"106-15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1084713811408348\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Amplification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1084713811408348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/6/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Amplification","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1084713811408348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/6/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

研究中使用的声场条件,特别是助听器的测试和装配,通常被简化或简化为基本的物理场,如自由声场或漫射声场。这种理想条件的概念很容易在理论和实验研究以及定向麦克风模型中引入。然而,当涉及到助听器的实际应用时,由于房间传递函数的特定稳态和瞬态特性以及相应的脉冲响应和双耳参数,现场条件更为复杂。声场可分为室外、农村、城市和室内环境。此外,在不同大小和形状的封闭空间中,以及在车辆、火车和飞机的运输情况下,声场与双耳信号进行了比较。在实验室测试中,不确定性的来源是双耳线索的个体差异和对声场条件的控制过少。此外,实验室声场不能涵盖各种复杂的声环境。空间音频格式,如高阶双声,不仅在室内声学和音频工程中,而且在听力学中都是声场参考的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sound fields in complex listening environments.

The conditions of sound fields used in research, especially testing and fitting of hearing aids, are usually simplified or reduced to fundamental physical fields, such as the free or the diffuse sound field. The concepts of such ideal conditions are easily introduced in theoretical and experimental investigations and in models for directional microphones, for example. When it comes to real-world application of hearing aids, however, the field conditions are more complex with regard to specific stationary and transient properties in room transfer functions and the corresponding impulse responses and binaural parameters. Sound fields can be categorized in outdoor rural and urban and indoor environments. Furthermore, sound fields in closed spaces of various sizes and shapes and in situations of transport in vehicles, trains, and aircrafts are compared with regard to the binaural signals. In laboratory tests, sources of uncertainties are individual differences in binaural cues and too less controlled sound field conditions. Furthermore, laboratory sound fields do not cover the variety of complex sound environments. Spatial audio formats such as higher-order ambisonics are candidates for sound field references not only in room acoustics and audio engineering but also in audiology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in Amplification
Trends in Amplification AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY-OTORHINOLARYNGOLOGY
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊最新文献
Laboratory and field study of the potential benefits of pinna cue-preserving hearing aids. Modern prescription theory and application: realistic expectations for speech recognition with hearing AIDS. The perception of telephone-processed speech by combined electric and acoustic stimulation. The master hearing aid. How linguistic closure and verbal working memory relate to speech recognition in noise--a review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1