{"title":"小rna击中了一个新的目标:通过靶向基因下游的非编码序列来调节基因表达。","authors":"Vadim V Demidov","doi":"10.4161/adna.1.2.13945","DOIUrl":null,"url":null,"abstract":"<p><p>The University of Texas researchers have recently discovered that small synthetic RNAs (sRNAs) that are complementary to sequences located 3'-outside of genes can efficiently modulate gene expression. These new findings significantly expand the transcription-regulatory potential of sRNAs, and they also may provide useful leads for other artificial nucleobase oligomers to target sequences beyond the 3' termini of mRNA.</p>","PeriodicalId":8444,"journal":{"name":"Artificial DNA: PNA & XNA","volume":"1 2","pages":"64-65"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/adna.1.2.13945","citationCount":"0","resultStr":"{\"title\":\"Small RNAs hit a new target: Modulation of gene expression by targeting the non-coding sequences downstream from a gene.\",\"authors\":\"Vadim V Demidov\",\"doi\":\"10.4161/adna.1.2.13945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The University of Texas researchers have recently discovered that small synthetic RNAs (sRNAs) that are complementary to sequences located 3'-outside of genes can efficiently modulate gene expression. These new findings significantly expand the transcription-regulatory potential of sRNAs, and they also may provide useful leads for other artificial nucleobase oligomers to target sequences beyond the 3' termini of mRNA.</p>\",\"PeriodicalId\":8444,\"journal\":{\"name\":\"Artificial DNA: PNA & XNA\",\"volume\":\"1 2\",\"pages\":\"64-65\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4161/adna.1.2.13945\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial DNA: PNA & XNA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4161/adna.1.2.13945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial DNA: PNA & XNA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4161/adna.1.2.13945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Small RNAs hit a new target: Modulation of gene expression by targeting the non-coding sequences downstream from a gene.
The University of Texas researchers have recently discovered that small synthetic RNAs (sRNAs) that are complementary to sequences located 3'-outside of genes can efficiently modulate gene expression. These new findings significantly expand the transcription-regulatory potential of sRNAs, and they also may provide useful leads for other artificial nucleobase oligomers to target sequences beyond the 3' termini of mRNA.