Erika Staudacher, Herwig Stepan, Martin Gutternigg
{"title":"腹足动物蛋白质的n -糖基化。","authors":"Erika Staudacher, Herwig Stepan, Martin Gutternigg","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Glycosylation plays an important role in several types of recognition processes associated with fertilisation and development, allergies, pathological events and cell death. Whereas the amino acid sequence of a protein is fixed by the DNA, the glycosylation abilities depend on enzymes and substrates currently present in the cell.During the last decades our knowledge on glycosylation - the structure of glycans as well as the corresponding biochemical pathways including the responsible enzymes - especially on glycans of mammalian origin increased enormously. The glycosylation capabilities of other species were under investigation only if their glycans were for any reason connected to human life (e.g. some recognition processes of pathogens or allergy on food or plant glycans) or if they were potent candidates for cell culture systems for the expression of therapeutic agents (some insect, yeast and plant cells). However, in the meantime there is an increasing interest also in invertebrate glycosylation.Snails in particular show a broad spectrum of glycosylation abilities within their N-glycosylation pattern. In one case this has been shown to be involved in an intermediate host - parasite recognition process. For other snail species, it was found that they share many structural elements of N-glycans with mammals, plants, insects or nematodes. Sometimes several of these elements are present within one single structure.Here we present an overview of the current knowledge of N-glycosylation of snails, the glycan structures and the corresponding enzymes involved in the biosynthetic glycosylation pathway.</p>","PeriodicalId":72758,"journal":{"name":"Current topics in biochemical research","volume":"11 2","pages":"29-39"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3114280/pdf/ukmss-35001.pdf","citationCount":"0","resultStr":"{\"title\":\"PROTEIN N-GLYCOSYLATION OF GASTROPODS.\",\"authors\":\"Erika Staudacher, Herwig Stepan, Martin Gutternigg\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glycosylation plays an important role in several types of recognition processes associated with fertilisation and development, allergies, pathological events and cell death. Whereas the amino acid sequence of a protein is fixed by the DNA, the glycosylation abilities depend on enzymes and substrates currently present in the cell.During the last decades our knowledge on glycosylation - the structure of glycans as well as the corresponding biochemical pathways including the responsible enzymes - especially on glycans of mammalian origin increased enormously. The glycosylation capabilities of other species were under investigation only if their glycans were for any reason connected to human life (e.g. some recognition processes of pathogens or allergy on food or plant glycans) or if they were potent candidates for cell culture systems for the expression of therapeutic agents (some insect, yeast and plant cells). However, in the meantime there is an increasing interest also in invertebrate glycosylation.Snails in particular show a broad spectrum of glycosylation abilities within their N-glycosylation pattern. In one case this has been shown to be involved in an intermediate host - parasite recognition process. For other snail species, it was found that they share many structural elements of N-glycans with mammals, plants, insects or nematodes. Sometimes several of these elements are present within one single structure.Here we present an overview of the current knowledge of N-glycosylation of snails, the glycan structures and the corresponding enzymes involved in the biosynthetic glycosylation pathway.</p>\",\"PeriodicalId\":72758,\"journal\":{\"name\":\"Current topics in biochemical research\",\"volume\":\"11 2\",\"pages\":\"29-39\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3114280/pdf/ukmss-35001.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current topics in biochemical research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in biochemical research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Glycosylation plays an important role in several types of recognition processes associated with fertilisation and development, allergies, pathological events and cell death. Whereas the amino acid sequence of a protein is fixed by the DNA, the glycosylation abilities depend on enzymes and substrates currently present in the cell.During the last decades our knowledge on glycosylation - the structure of glycans as well as the corresponding biochemical pathways including the responsible enzymes - especially on glycans of mammalian origin increased enormously. The glycosylation capabilities of other species were under investigation only if their glycans were for any reason connected to human life (e.g. some recognition processes of pathogens or allergy on food or plant glycans) or if they were potent candidates for cell culture systems for the expression of therapeutic agents (some insect, yeast and plant cells). However, in the meantime there is an increasing interest also in invertebrate glycosylation.Snails in particular show a broad spectrum of glycosylation abilities within their N-glycosylation pattern. In one case this has been shown to be involved in an intermediate host - parasite recognition process. For other snail species, it was found that they share many structural elements of N-glycans with mammals, plants, insects or nematodes. Sometimes several of these elements are present within one single structure.Here we present an overview of the current knowledge of N-glycosylation of snails, the glycan structures and the corresponding enzymes involved in the biosynthetic glycosylation pathway.