{"title":"蛋白酪氨酸磷酸酶 SHP-2 (PTPN11) 在造血和白血病发生中的作用。","authors":"Xia Liu, Cheng-Kui Qu","doi":"10.1155/2011/195239","DOIUrl":null,"url":null,"abstract":"<p><p>SHP-2 (PTPN11), a ubiquitously expressed protein tyrosine phosphatase, is critical for hematopoietic cell development and function owing to its essential role in growth factor/cytokine signaling. More importantly, germline and somatic mutations in this phosphatase are associated with Noonan syndrome, Leopard syndrome, and childhood hematologic malignancies. The molecular mechanisms by which SHP-2 mutations induce these diseases are not fully understood, as the biochemical bases of SHP-2 functions still remain elusive. Further understanding SHP-2 signaling activities and identification of its interacting proteins/substrates will shed light on the pathogenesis of PTPN11-associated hematologic malignancies, which, in turn, may lead to novel therapeutics for these diseases.</p>","PeriodicalId":89176,"journal":{"name":"Journal of signal transduction","volume":"2011 ","pages":"195239"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3135119/pdf/","citationCount":"0","resultStr":"{\"title\":\"Protein Tyrosine Phosphatase SHP-2 (PTPN11) in Hematopoiesis and Leukemogenesis.\",\"authors\":\"Xia Liu, Cheng-Kui Qu\",\"doi\":\"10.1155/2011/195239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>SHP-2 (PTPN11), a ubiquitously expressed protein tyrosine phosphatase, is critical for hematopoietic cell development and function owing to its essential role in growth factor/cytokine signaling. More importantly, germline and somatic mutations in this phosphatase are associated with Noonan syndrome, Leopard syndrome, and childhood hematologic malignancies. The molecular mechanisms by which SHP-2 mutations induce these diseases are not fully understood, as the biochemical bases of SHP-2 functions still remain elusive. Further understanding SHP-2 signaling activities and identification of its interacting proteins/substrates will shed light on the pathogenesis of PTPN11-associated hematologic malignancies, which, in turn, may lead to novel therapeutics for these diseases.</p>\",\"PeriodicalId\":89176,\"journal\":{\"name\":\"Journal of signal transduction\",\"volume\":\"2011 \",\"pages\":\"195239\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3135119/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of signal transduction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2011/195239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/6/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of signal transduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2011/195239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/6/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Protein Tyrosine Phosphatase SHP-2 (PTPN11) in Hematopoiesis and Leukemogenesis.
SHP-2 (PTPN11), a ubiquitously expressed protein tyrosine phosphatase, is critical for hematopoietic cell development and function owing to its essential role in growth factor/cytokine signaling. More importantly, germline and somatic mutations in this phosphatase are associated with Noonan syndrome, Leopard syndrome, and childhood hematologic malignancies. The molecular mechanisms by which SHP-2 mutations induce these diseases are not fully understood, as the biochemical bases of SHP-2 functions still remain elusive. Further understanding SHP-2 signaling activities and identification of its interacting proteins/substrates will shed light on the pathogenesis of PTPN11-associated hematologic malignancies, which, in turn, may lead to novel therapeutics for these diseases.