Michael S Sabel, Yashu Liu, Kent A Griffith, Jintang He, Xaiolei Xie, David M Lubman
{"title":"蛋白芯片检测血清自身抗体在黑色素瘤中的临床应用。","authors":"Michael S Sabel, Yashu Liu, Kent A Griffith, Jintang He, Xaiolei Xie, David M Lubman","doi":"10.1155/2011/413742","DOIUrl":null,"url":null,"abstract":"<p><p>Better prognostic and predictive markers in melanoma are needed to select patients for therapy. We utilized a dual-lectin affinity chromatography and a natural protein microarray-based analysis to select a subproteome of target glycoproteins to profile serum antibodies against melanoma associated antigens that may predict nodal positivity. We identified 5 melanoma-associated antigens using this microarray coupled to mass spectrometry; GRP75, GRP94, ASAH1, CTSD and LDHB. We evaluated their predictive value for nodal status adjusting for age, gender, Breslow thickness, mitotic rate and ulceration using standard logistic regression. After adjustment, ASAH1, CTSD and LDHB were significantly negatively associated with nodal status (P = 0.0008) and GRP94 was significantly positively associated (P = 0.014). Our best multivariate model for nodal positivity included Breslow thickness, presence of serum anti-ASAH1, anti-LDHB or anti-CTSD, and presence of serum anti-GRP94, with an area under the ROC curve of 0.869. If validated, these results show promise for selecting clinically node negative patients for SLN biopsy. In addition, there is strong potential for glycoprotein microarray to screen serum autoantibodies that may identify patients at high risk of distant metastases or those likely or unlikely to respond to treatment, and these proteins may serve as targets for intervention.</p>","PeriodicalId":73474,"journal":{"name":"International journal of proteomics","volume":" ","pages":"413742"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2011/413742","citationCount":"11","resultStr":"{\"title\":\"Clinical utility of serum autoantibodies detected by protein microarray in melanoma.\",\"authors\":\"Michael S Sabel, Yashu Liu, Kent A Griffith, Jintang He, Xaiolei Xie, David M Lubman\",\"doi\":\"10.1155/2011/413742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Better prognostic and predictive markers in melanoma are needed to select patients for therapy. We utilized a dual-lectin affinity chromatography and a natural protein microarray-based analysis to select a subproteome of target glycoproteins to profile serum antibodies against melanoma associated antigens that may predict nodal positivity. We identified 5 melanoma-associated antigens using this microarray coupled to mass spectrometry; GRP75, GRP94, ASAH1, CTSD and LDHB. We evaluated their predictive value for nodal status adjusting for age, gender, Breslow thickness, mitotic rate and ulceration using standard logistic regression. After adjustment, ASAH1, CTSD and LDHB were significantly negatively associated with nodal status (P = 0.0008) and GRP94 was significantly positively associated (P = 0.014). Our best multivariate model for nodal positivity included Breslow thickness, presence of serum anti-ASAH1, anti-LDHB or anti-CTSD, and presence of serum anti-GRP94, with an area under the ROC curve of 0.869. If validated, these results show promise for selecting clinically node negative patients for SLN biopsy. In addition, there is strong potential for glycoprotein microarray to screen serum autoantibodies that may identify patients at high risk of distant metastases or those likely or unlikely to respond to treatment, and these proteins may serve as targets for intervention.</p>\",\"PeriodicalId\":73474,\"journal\":{\"name\":\"International journal of proteomics\",\"volume\":\" \",\"pages\":\"413742\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2011/413742\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of proteomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2011/413742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/10/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2011/413742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/10/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Clinical utility of serum autoantibodies detected by protein microarray in melanoma.
Better prognostic and predictive markers in melanoma are needed to select patients for therapy. We utilized a dual-lectin affinity chromatography and a natural protein microarray-based analysis to select a subproteome of target glycoproteins to profile serum antibodies against melanoma associated antigens that may predict nodal positivity. We identified 5 melanoma-associated antigens using this microarray coupled to mass spectrometry; GRP75, GRP94, ASAH1, CTSD and LDHB. We evaluated their predictive value for nodal status adjusting for age, gender, Breslow thickness, mitotic rate and ulceration using standard logistic regression. After adjustment, ASAH1, CTSD and LDHB were significantly negatively associated with nodal status (P = 0.0008) and GRP94 was significantly positively associated (P = 0.014). Our best multivariate model for nodal positivity included Breslow thickness, presence of serum anti-ASAH1, anti-LDHB or anti-CTSD, and presence of serum anti-GRP94, with an area under the ROC curve of 0.869. If validated, these results show promise for selecting clinically node negative patients for SLN biopsy. In addition, there is strong potential for glycoprotein microarray to screen serum autoantibodies that may identify patients at high risk of distant metastases or those likely or unlikely to respond to treatment, and these proteins may serve as targets for intervention.