系统生物学方法:水通道蛋白-2运输的建模。

Martina Fröhlich, Peter M T Deen, Edda Klipp
{"title":"系统生物学方法:水通道蛋白-2运输的建模。","authors":"Martina Fröhlich,&nbsp;Peter M T Deen,&nbsp;Edda Klipp","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In healthy individuals, dehydration of the body leads to release of the hormone vasopressin from the pituitary. Via the bloodstream, vasopressin reaches the collecting duct cells in the kidney, where the water channel Aquaporin-2 (AQP2) is expressed. After stimulation of the vasopressin V2 receptor by vasopressin, intracellular AQP2-containing vesicles fuse with the apical plasma membrane of the collecting duct cells. This leads to increased water reabsorption from the pro-urine into the blood and therefore to enhanced retention of water within the body. Using existing biological data we propose a mathematical model of AQP-2 trafficking and regulation in collecting duct cells. Our model includes the vasopressin receptor, adenylate cyclase, protein kinase A, and intracellular as well as membrane located AQP2. To model the chemical reactions we used ordinary differential equations (ODEs) based on mass action kinetics. We employ known protein concentrations and time series data to estimate the kinetic parameters of our model and demonstrate its validity. Through generating, testing and ranking different versions of the model, we show that some model versions can describe the data well as soon as important regulatory parts such as the reduction of the signal by internalization of the vasopressin-receptor or the negative feedback loop representing phosphodiesterase activity are included. We perform time-dependent sensitivity analysis to identify the reactions that have the greatest influence on the cAMP and membrane located AQP2 levels over time. We predict the time courses for membrane located AQP2 at different vasopressin concentrations, compare them with newly generated data and discuss the competencies of the model.</p>","PeriodicalId":73143,"journal":{"name":"Genome informatics. International Conference on Genome Informatics","volume":"24 ","pages":"42-55"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A systems biology approach: modelling of Aquaporin-2 trafficking.\",\"authors\":\"Martina Fröhlich,&nbsp;Peter M T Deen,&nbsp;Edda Klipp\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In healthy individuals, dehydration of the body leads to release of the hormone vasopressin from the pituitary. Via the bloodstream, vasopressin reaches the collecting duct cells in the kidney, where the water channel Aquaporin-2 (AQP2) is expressed. After stimulation of the vasopressin V2 receptor by vasopressin, intracellular AQP2-containing vesicles fuse with the apical plasma membrane of the collecting duct cells. This leads to increased water reabsorption from the pro-urine into the blood and therefore to enhanced retention of water within the body. Using existing biological data we propose a mathematical model of AQP-2 trafficking and regulation in collecting duct cells. Our model includes the vasopressin receptor, adenylate cyclase, protein kinase A, and intracellular as well as membrane located AQP2. To model the chemical reactions we used ordinary differential equations (ODEs) based on mass action kinetics. We employ known protein concentrations and time series data to estimate the kinetic parameters of our model and demonstrate its validity. Through generating, testing and ranking different versions of the model, we show that some model versions can describe the data well as soon as important regulatory parts such as the reduction of the signal by internalization of the vasopressin-receptor or the negative feedback loop representing phosphodiesterase activity are included. We perform time-dependent sensitivity analysis to identify the reactions that have the greatest influence on the cAMP and membrane located AQP2 levels over time. We predict the time courses for membrane located AQP2 at different vasopressin concentrations, compare them with newly generated data and discuss the competencies of the model.</p>\",\"PeriodicalId\":73143,\"journal\":{\"name\":\"Genome informatics. International Conference on Genome Informatics\",\"volume\":\"24 \",\"pages\":\"42-55\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome informatics. International Conference on Genome Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome informatics. International Conference on Genome Informatics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在健康个体中,身体脱水导致垂体释放激素抗利尿激素。加压素通过血液到达肾脏的集管细胞,在那里水通道通道蛋白-2 (AQP2)表达。后叶加压素刺激后叶加压素V2受体后,细胞内含有aqp2的囊泡与集管细胞的顶质膜融合。这就会增加尿液前体对血液的水分再吸收,从而增强体内水分的潴留。利用现有的生物学数据,我们提出了AQP-2在收集管细胞中的运输和调控的数学模型。我们的模型包括抗利尿激素受体,腺苷酸环化酶,蛋白激酶A,以及位于细胞内和膜上的AQP2。为了模拟化学反应,我们采用了基于质量作用动力学的常微分方程(ode)。我们使用已知的蛋白质浓度和时间序列数据来估计模型的动力学参数,并证明了其有效性。通过生成、测试和排序不同版本的模型,我们表明,只要包括重要的调节部分,如抗利尿激素受体内化信号的减少或代表磷酸二酯酶活性的负反馈回路,一些模型版本就可以很好地描述数据。我们进行了时间依赖的敏感性分析,以确定随着时间的推移对cAMP和膜位置AQP2水平影响最大的反应。我们预测了不同抗利尿激素浓度下位于AQP2的膜的时间过程,并将其与新生成的数据进行了比较,并讨论了模型的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A systems biology approach: modelling of Aquaporin-2 trafficking.

In healthy individuals, dehydration of the body leads to release of the hormone vasopressin from the pituitary. Via the bloodstream, vasopressin reaches the collecting duct cells in the kidney, where the water channel Aquaporin-2 (AQP2) is expressed. After stimulation of the vasopressin V2 receptor by vasopressin, intracellular AQP2-containing vesicles fuse with the apical plasma membrane of the collecting duct cells. This leads to increased water reabsorption from the pro-urine into the blood and therefore to enhanced retention of water within the body. Using existing biological data we propose a mathematical model of AQP-2 trafficking and regulation in collecting duct cells. Our model includes the vasopressin receptor, adenylate cyclase, protein kinase A, and intracellular as well as membrane located AQP2. To model the chemical reactions we used ordinary differential equations (ODEs) based on mass action kinetics. We employ known protein concentrations and time series data to estimate the kinetic parameters of our model and demonstrate its validity. Through generating, testing and ranking different versions of the model, we show that some model versions can describe the data well as soon as important regulatory parts such as the reduction of the signal by internalization of the vasopressin-receptor or the negative feedback loop representing phosphodiesterase activity are included. We perform time-dependent sensitivity analysis to identify the reactions that have the greatest influence on the cAMP and membrane located AQP2 levels over time. We predict the time courses for membrane located AQP2 at different vasopressin concentrations, compare them with newly generated data and discuss the competencies of the model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Docking-calculation-based method for predicting protein-RNA interactions. Sign: large-scale gene network estimation environment for high performance computing. Linear regression models predicting strength of transcriptional activity of promoters. Database for crude drugs and Kampo medicine. Mechanism of cell cycle disruption by multiple p53 pulses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1