多重p53脉冲破坏细胞周期的机制。

Kazunari Iwamoto, Hiroyuki Hamada, Masahiro Okamoto
{"title":"多重p53脉冲破坏细胞周期的机制。","authors":"Kazunari Iwamoto,&nbsp;Hiroyuki Hamada,&nbsp;Masahiro Okamoto","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>When the DNA damage is generated, the tumor suppressor gene p53 is activated and selects the cell fate such as the cell cycle arrest, the DNA repair and the induction of apoptosis. Recently, the p53 oscillation was observed in MCF7 cell line. However, the biological meaning of p53 oscillation was still unclear. Here, we constructed a novel mathematical model of cell cycle regulatory system with p53 signaling network to investigate the relationship between the p53 oscillation and the cell cycle progression. First, the simulated result without DNA damage agreed with the biological findings. Next, the simulations with DNA damage realized both the p53 oscillation and the cell cycle arrest, and indicated that the generation of multiple p53 pulses disrupted the cell cycle progression. Moreover, the simulated results showed that the cell cycle disruption was caused by the catastrophe of M phase in the cell cycle, which resulted from the decline in cyclin A/cyclin-dependent kinase 2. The results in this study suggested that the generation of multiple p53 pulses against DNA damage may be used as a marker of cell cycle disruption.</p>","PeriodicalId":73143,"journal":{"name":"Genome informatics. International Conference on Genome Informatics","volume":"25 1","pages":"12-24"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism of cell cycle disruption by multiple p53 pulses.\",\"authors\":\"Kazunari Iwamoto,&nbsp;Hiroyuki Hamada,&nbsp;Masahiro Okamoto\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>When the DNA damage is generated, the tumor suppressor gene p53 is activated and selects the cell fate such as the cell cycle arrest, the DNA repair and the induction of apoptosis. Recently, the p53 oscillation was observed in MCF7 cell line. However, the biological meaning of p53 oscillation was still unclear. Here, we constructed a novel mathematical model of cell cycle regulatory system with p53 signaling network to investigate the relationship between the p53 oscillation and the cell cycle progression. First, the simulated result without DNA damage agreed with the biological findings. Next, the simulations with DNA damage realized both the p53 oscillation and the cell cycle arrest, and indicated that the generation of multiple p53 pulses disrupted the cell cycle progression. Moreover, the simulated results showed that the cell cycle disruption was caused by the catastrophe of M phase in the cell cycle, which resulted from the decline in cyclin A/cyclin-dependent kinase 2. The results in this study suggested that the generation of multiple p53 pulses against DNA damage may be used as a marker of cell cycle disruption.</p>\",\"PeriodicalId\":73143,\"journal\":{\"name\":\"Genome informatics. International Conference on Genome Informatics\",\"volume\":\"25 1\",\"pages\":\"12-24\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome informatics. International Conference on Genome Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome informatics. International Conference on Genome Informatics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当DNA损伤产生时,肿瘤抑制基因p53被激活,选择细胞周期阻滞、DNA修复、诱导凋亡等细胞命运。最近在MCF7细胞系中观察到p53振荡。然而,p53振荡的生物学意义尚不清楚。在此,我们构建了一个具有p53信号网络的细胞周期调控系统的数学模型来研究p53振荡与细胞周期进程的关系。首先,没有DNA损伤的模拟结果与生物学研究结果一致。接下来,DNA损伤的模拟实现了p53振荡和细胞周期阻滞,并表明多个p53脉冲的产生破坏了细胞周期进程。此外,模拟结果表明,细胞周期中断是由于细胞周期中的M期突变引起的,这是由于周期蛋白A/周期蛋白依赖性激酶2的下降。本研究的结果表明,产生多个p53脉冲对抗DNA损伤可能被用作细胞周期中断的标志。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanism of cell cycle disruption by multiple p53 pulses.

When the DNA damage is generated, the tumor suppressor gene p53 is activated and selects the cell fate such as the cell cycle arrest, the DNA repair and the induction of apoptosis. Recently, the p53 oscillation was observed in MCF7 cell line. However, the biological meaning of p53 oscillation was still unclear. Here, we constructed a novel mathematical model of cell cycle regulatory system with p53 signaling network to investigate the relationship between the p53 oscillation and the cell cycle progression. First, the simulated result without DNA damage agreed with the biological findings. Next, the simulations with DNA damage realized both the p53 oscillation and the cell cycle arrest, and indicated that the generation of multiple p53 pulses disrupted the cell cycle progression. Moreover, the simulated results showed that the cell cycle disruption was caused by the catastrophe of M phase in the cell cycle, which resulted from the decline in cyclin A/cyclin-dependent kinase 2. The results in this study suggested that the generation of multiple p53 pulses against DNA damage may be used as a marker of cell cycle disruption.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Docking-calculation-based method for predicting protein-RNA interactions. Sign: large-scale gene network estimation environment for high performance computing. Linear regression models predicting strength of transcriptional activity of promoters. Database for crude drugs and Kampo medicine. Mechanism of cell cycle disruption by multiple p53 pulses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1