构造广义局部诱导文本度量的有效框架。

Saeed Amizadeh, Shuguang Wang, Milos Hauskrecht
{"title":"构造广义局部诱导文本度量的有效框架。","authors":"Saeed Amizadeh,&nbsp;Shuguang Wang,&nbsp;Milos Hauskrecht","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we propose a new framework for constructing text metrics which can be used to compare and support inferences among terms and sets of terms. Our metric is derived from data-driven kernels on graphs that let us capture global relations among terms and sets of terms, regardless of their complexity and size. To compute the metric efficiently for any two subsets of terms, we develop an approximation technique that relies on the precompiled term-term similarities. To scale-up the approach to problems with huge number of terms, we develop and experiment with a solution that sub-samples the term space. We demonstrate the benefits of the whole framework on two text inference tasks: prediction of terms in the article from its abstract and query expansion in information retrieval.</p>","PeriodicalId":73334,"journal":{"name":"IJCAI : proceedings of the conference","volume":" ","pages":"1159-1164"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3264061/pdf/nihms348372.pdf","citationCount":"0","resultStr":"{\"title\":\"An Efficient Framework for Constructing Generalized Locally-Induced Text Metrics.\",\"authors\":\"Saeed Amizadeh,&nbsp;Shuguang Wang,&nbsp;Milos Hauskrecht\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we propose a new framework for constructing text metrics which can be used to compare and support inferences among terms and sets of terms. Our metric is derived from data-driven kernels on graphs that let us capture global relations among terms and sets of terms, regardless of their complexity and size. To compute the metric efficiently for any two subsets of terms, we develop an approximation technique that relies on the precompiled term-term similarities. To scale-up the approach to problems with huge number of terms, we develop and experiment with a solution that sub-samples the term space. We demonstrate the benefits of the whole framework on two text inference tasks: prediction of terms in the article from its abstract and query expansion in information retrieval.</p>\",\"PeriodicalId\":73334,\"journal\":{\"name\":\"IJCAI : proceedings of the conference\",\"volume\":\" \",\"pages\":\"1159-1164\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3264061/pdf/nihms348372.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCAI : proceedings of the conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCAI : proceedings of the conference","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一个构建文本度量的新框架,该框架可用于比较和支持术语和术语集之间的推理。我们的度量来源于图上的数据驱动内核,这些内核使我们能够捕获术语和术语集之间的全局关系,而不考虑它们的复杂性和大小。为了有效地计算任意两个项子集的度量,我们开发了一种依赖于预编译的项-项相似性的近似技术。为了将该方法扩展到具有大量术语的问题,我们开发并试验了一种对术语空间进行子采样的解决方案。我们展示了整个框架在两个文本推理任务上的好处:从摘要中预测文章中的术语和信息检索中的查询扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Efficient Framework for Constructing Generalized Locally-Induced Text Metrics.

In this paper, we propose a new framework for constructing text metrics which can be used to compare and support inferences among terms and sets of terms. Our metric is derived from data-driven kernels on graphs that let us capture global relations among terms and sets of terms, regardless of their complexity and size. To compute the metric efficiently for any two subsets of terms, we develop an approximation technique that relies on the precompiled term-term similarities. To scale-up the approach to problems with huge number of terms, we develop and experiment with a solution that sub-samples the term space. We demonstrate the benefits of the whole framework on two text inference tasks: prediction of terms in the article from its abstract and query expansion in information retrieval.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predictive Modeling with Temporal Graphical Representation on Electronic Health Records. Adapt to Adaptation: Learning Personalization for Cross-Silo Federated Learning. Stabilizing and Enhancing Link Prediction through Deepened Graph Auto-Encoders. RCA: A Deep Collaborative Autoencoder Approach for Anomaly Detection Improving Attention Mechanism in Graph Neural Networks via Cardinality Preservation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1