Andrea Marzi, Heinz Feldmann, Thomas W Geisbert, Darryl Falzarano
{"title":"以水泡性口炎病毒为基础的疫苗预防和治疗丝状病毒感染。","authors":"Andrea Marzi, Heinz Feldmann, Thomas W Geisbert, Darryl Falzarano","doi":"10.4172/2157-2526.S1-004","DOIUrl":null,"url":null,"abstract":"<p><p>Ebola and Marburg viruses are emerging/re-emerging zoonotic pathogens that cause severe viral hemorrhagic fever with case-fatality rates up to 90% in humans. Over the last three decades numerous outbreaks, of increasing frequency, have been documented in endemic regions. Furthermore, as a result of increased international travel filovirus infections have been imported into South Africa, Europe and North America. Both viruses possess the potential of being used as bioterrorism agents and are classified as category A pathogens. Currently there is neither a licensed vaccine nor effective treatment available, despite substantial efforts being d́edicated to understanding filovirus well as vaccine and drug development. One of the most promising vaccine platforms is based on replication competent recombinant vesicular stomatitis viruses (rVSV) that express a filovirus glycoprotein as the surface antigen. These rVSVs have been extensively studied in rodent and nonhuman primate models of filovirus disease and, in general, have been shown to be 100% protective in pre-exposure prophylaxis. In addition, rVSVs have demonstrated potential for post-exposure treatment, and thus would be particularly useful in the event of intentional release as well as accidental exposures in outbreak and laboratory settings.</p>","PeriodicalId":73625,"journal":{"name":"Journal of bioterrorism & biodefense","volume":"S1 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2011-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3265573/pdf/nihms342652.pdf","citationCount":"67","resultStr":"{\"title\":\"Vesicular Stomatitis Virus-Based Vaccines for Prophylaxis and Treatment of Filovirus Infections.\",\"authors\":\"Andrea Marzi, Heinz Feldmann, Thomas W Geisbert, Darryl Falzarano\",\"doi\":\"10.4172/2157-2526.S1-004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ebola and Marburg viruses are emerging/re-emerging zoonotic pathogens that cause severe viral hemorrhagic fever with case-fatality rates up to 90% in humans. Over the last three decades numerous outbreaks, of increasing frequency, have been documented in endemic regions. Furthermore, as a result of increased international travel filovirus infections have been imported into South Africa, Europe and North America. Both viruses possess the potential of being used as bioterrorism agents and are classified as category A pathogens. Currently there is neither a licensed vaccine nor effective treatment available, despite substantial efforts being d́edicated to understanding filovirus well as vaccine and drug development. One of the most promising vaccine platforms is based on replication competent recombinant vesicular stomatitis viruses (rVSV) that express a filovirus glycoprotein as the surface antigen. These rVSVs have been extensively studied in rodent and nonhuman primate models of filovirus disease and, in general, have been shown to be 100% protective in pre-exposure prophylaxis. In addition, rVSVs have demonstrated potential for post-exposure treatment, and thus would be particularly useful in the event of intentional release as well as accidental exposures in outbreak and laboratory settings.</p>\",\"PeriodicalId\":73625,\"journal\":{\"name\":\"Journal of bioterrorism & biodefense\",\"volume\":\"S1 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3265573/pdf/nihms342652.pdf\",\"citationCount\":\"67\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of bioterrorism & biodefense\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2157-2526.S1-004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of bioterrorism & biodefense","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2157-2526.S1-004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vesicular Stomatitis Virus-Based Vaccines for Prophylaxis and Treatment of Filovirus Infections.
Ebola and Marburg viruses are emerging/re-emerging zoonotic pathogens that cause severe viral hemorrhagic fever with case-fatality rates up to 90% in humans. Over the last three decades numerous outbreaks, of increasing frequency, have been documented in endemic regions. Furthermore, as a result of increased international travel filovirus infections have been imported into South Africa, Europe and North America. Both viruses possess the potential of being used as bioterrorism agents and are classified as category A pathogens. Currently there is neither a licensed vaccine nor effective treatment available, despite substantial efforts being d́edicated to understanding filovirus well as vaccine and drug development. One of the most promising vaccine platforms is based on replication competent recombinant vesicular stomatitis viruses (rVSV) that express a filovirus glycoprotein as the surface antigen. These rVSVs have been extensively studied in rodent and nonhuman primate models of filovirus disease and, in general, have been shown to be 100% protective in pre-exposure prophylaxis. In addition, rVSVs have demonstrated potential for post-exposure treatment, and thus would be particularly useful in the event of intentional release as well as accidental exposures in outbreak and laboratory settings.