传感器选择与化学传感优化:迈向可适应的化学传感系统。

Frontiers in neuroengineering Pub Date : 2012-01-04 eCollection Date: 2011-01-01 DOI:10.3389/fneng.2011.00019
Alexander Vergara, Eduard Llobet
{"title":"传感器选择与化学传感优化:迈向可适应的化学传感系统。","authors":"Alexander Vergara, Eduard Llobet","doi":"10.3389/fneng.2011.00019","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past two decades, despite the tremendous research on chemical sensors and machine olfaction to develop micro-sensory systems that will accomplish the growing existent needs in personal health (implantable sensors), environment monitoring (widely distributed sensor networks), and security/threat detection (chemo/bio warfare agents), simple, low-cost molecular sensing platforms capable of long-term autonomous operation remain beyond the current state-of-the-art of chemical sensing. A fundamental issue within this context is that most of the chemical sensors depend on interactions between the targeted species and the surfaces functionalized with receptors that bind the target species selectively, and that these binding events are coupled with transduction processes that begin to change when they are exposed to the messy world of real samples. With the advent of fundamental breakthroughs at the intersection of materials science, micro- and nano-technology, and signal processing, hybrid chemo-sensory systems have incorporated tunable, optimizable operating parameters, through which changes in the response characteristics can be modeled and compensated as the environmental conditions or application needs change. The objective of this article, in this context, is to bring together the key advances at the device, data processing, and system levels that enable chemo-sensory systems to \"adapt\" in response to their environments. Accordingly, in this review we will feature the research effort made by selected experts on chemical sensing and information theory, whose work has been devoted to develop strategies that provide tunability and adaptability to single sensor devices or sensory array systems. Particularly, we consider sensor-array selection, modulation of internal sensing parameters, and active sensing. The article ends with some conclusions drawn from the results presented and a visionary look toward the future in terms of how the field may evolve.</p>","PeriodicalId":73093,"journal":{"name":"Frontiers in neuroengineering","volume":" ","pages":"19"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/4d/43/fneng-04-00019.PMC3250696.pdf","citationCount":"0","resultStr":"{\"title\":\"Sensor selection and chemo-sensory optimization: toward an adaptable chemo-sensory system.\",\"authors\":\"Alexander Vergara, Eduard Llobet\",\"doi\":\"10.3389/fneng.2011.00019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the past two decades, despite the tremendous research on chemical sensors and machine olfaction to develop micro-sensory systems that will accomplish the growing existent needs in personal health (implantable sensors), environment monitoring (widely distributed sensor networks), and security/threat detection (chemo/bio warfare agents), simple, low-cost molecular sensing platforms capable of long-term autonomous operation remain beyond the current state-of-the-art of chemical sensing. A fundamental issue within this context is that most of the chemical sensors depend on interactions between the targeted species and the surfaces functionalized with receptors that bind the target species selectively, and that these binding events are coupled with transduction processes that begin to change when they are exposed to the messy world of real samples. With the advent of fundamental breakthroughs at the intersection of materials science, micro- and nano-technology, and signal processing, hybrid chemo-sensory systems have incorporated tunable, optimizable operating parameters, through which changes in the response characteristics can be modeled and compensated as the environmental conditions or application needs change. The objective of this article, in this context, is to bring together the key advances at the device, data processing, and system levels that enable chemo-sensory systems to \\\"adapt\\\" in response to their environments. Accordingly, in this review we will feature the research effort made by selected experts on chemical sensing and information theory, whose work has been devoted to develop strategies that provide tunability and adaptability to single sensor devices or sensory array systems. Particularly, we consider sensor-array selection, modulation of internal sensing parameters, and active sensing. The article ends with some conclusions drawn from the results presented and a visionary look toward the future in terms of how the field may evolve.</p>\",\"PeriodicalId\":73093,\"journal\":{\"name\":\"Frontiers in neuroengineering\",\"volume\":\" \",\"pages\":\"19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/4d/43/fneng-04-00019.PMC3250696.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in neuroengineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fneng.2011.00019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in neuroengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fneng.2011.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的二十年里,尽管人们对化学传感器和机器嗅觉进行了大量研究,以开发微型传感系统,满足个人健康(植入式传感器)、环境监测(广泛分布的传感器网络)和安全/威胁检测(化学/生物战剂)等方面日益增长的需求,但能够长期自主运行的简单、低成本分子传感平台仍然超出了当前化学传感的最先进水平。这方面的一个基本问题是,大多数化学传感器依赖于目标物种与表面功能化受体之间的相互作用,这些受体可选择性地与目标物种结合,而这些结合事件与转导过程相耦合,当它们暴露在真实样品的混乱世界中时,这些过程就会开始发生变化。随着材料科学、微米和纳米技术以及信号处理等交叉学科取得根本性突破,混合化学传感系统已纳入了可调谐、可优化的操作参数,通过这些参数可以模拟响应特性的变化,并随着环境条件或应用需求的变化进行补偿。在这种情况下,本文的目的是汇集设备、数据处理和系统层面的主要进展,使化学传感系统能够 "适应 "环境。因此,在这篇综述中,我们将介绍部分化学传感和信息论专家的研究成果,他们的工作致力于开发可为单个传感器设备或传感阵列系统提供可调性和适应性的策略。特别是,我们考虑了传感器阵列选择、内部传感参数调制和主动传感。文章的最后,我们从所展示的成果中得出了一些结论,并对该领域的未来发展进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sensor selection and chemo-sensory optimization: toward an adaptable chemo-sensory system.

Over the past two decades, despite the tremendous research on chemical sensors and machine olfaction to develop micro-sensory systems that will accomplish the growing existent needs in personal health (implantable sensors), environment monitoring (widely distributed sensor networks), and security/threat detection (chemo/bio warfare agents), simple, low-cost molecular sensing platforms capable of long-term autonomous operation remain beyond the current state-of-the-art of chemical sensing. A fundamental issue within this context is that most of the chemical sensors depend on interactions between the targeted species and the surfaces functionalized with receptors that bind the target species selectively, and that these binding events are coupled with transduction processes that begin to change when they are exposed to the messy world of real samples. With the advent of fundamental breakthroughs at the intersection of materials science, micro- and nano-technology, and signal processing, hybrid chemo-sensory systems have incorporated tunable, optimizable operating parameters, through which changes in the response characteristics can be modeled and compensated as the environmental conditions or application needs change. The objective of this article, in this context, is to bring together the key advances at the device, data processing, and system levels that enable chemo-sensory systems to "adapt" in response to their environments. Accordingly, in this review we will feature the research effort made by selected experts on chemical sensing and information theory, whose work has been devoted to develop strategies that provide tunability and adaptability to single sensor devices or sensory array systems. Particularly, we consider sensor-array selection, modulation of internal sensing parameters, and active sensing. The article ends with some conclusions drawn from the results presented and a visionary look toward the future in terms of how the field may evolve.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In vivo comparison of the charge densities required to evoke motor responses using novel annular penetrating microelectrodes. SET: a pupil detection method using sinusoidal approximation. The chronic challenge-new vistas on long-term multisite contacts to the central nervous system. High frequency switched-mode stimulation can evoke post synaptic responses in cerebellar principal neurons. NeuroPG: open source software for optical pattern generation and data acquisition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1