Jian-Xiong Chen, Qinhui Tuo, Duan-Fang Liao, Heng Zeng
{"title":"抑制蛋白酪氨酸磷酸酶通过增强糖尿病患者的Ang-1/Tie-2信号通路促进血管生成。","authors":"Jian-Xiong Chen, Qinhui Tuo, Duan-Fang Liao, Heng Zeng","doi":"10.1155/2012/836759","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes is associated with impairment of angiogenesis such as reduction of myocardial capillary formation. Our previous studies demonstrate that disruption of Angiopoietin-1 (Ang-1)/Tie-2 signaling pathway contributes to the diabetes-associated impairment of angiogenesis. Protein tyrosine phosphatase (PTP) has a critical role in the regulation of insulin signal by inhibition of tyrosine kinase phosphorylation. In present study, we examined the role of protein tyrosine phosphatase-1 (SHP-1) in diabetes-associated impairment of Ang-1/Tie-2 angiogenic signaling and angiogenesis. SHP-1 expression was significantly increased in diabetic db/db mouse hearts. Furthermore, SHP-1 bond to Tie-2 receptor and stimulation with Ang-1 led to SHP-1 dissociation from Tie-2 in mouse heart microvascular endothelial cell (MHMEC). Exposure of MHMEC to high glucose (HG, 30 mmol/L) increased SHP-1/Tie-2 association accompanied by a significant reduction of Tie-2 phosphorylation. Exposure of MHMEC to HG also blunted Ang-1-mediated SHP-1/Tie-2 dissociation. Knockdown of SHP-1 significantly attenuated HG-induced caspase-3 activation and apoptosis in MHMEC. Treatment with PTP inhibitors restored Ang-1-induced Akt/eNOS phosphorylation and angiogenesis. Our data implicate a critical role of SHP-1 in diabetes-associated vascular complications, and that upregulation of Ang-1/Tie-2 signaling by targeting SHP-1 should be considered as a new therapeutic strategy for the treatment of diabetes-associated impairment of angiogenesis.</p>","PeriodicalId":12109,"journal":{"name":"Experimental Diabetes Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/836759","citationCount":"27","resultStr":"{\"title\":\"Inhibition of protein tyrosine phosphatase improves angiogenesis via enhancing Ang-1/Tie-2 signaling in diabetes.\",\"authors\":\"Jian-Xiong Chen, Qinhui Tuo, Duan-Fang Liao, Heng Zeng\",\"doi\":\"10.1155/2012/836759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetes is associated with impairment of angiogenesis such as reduction of myocardial capillary formation. Our previous studies demonstrate that disruption of Angiopoietin-1 (Ang-1)/Tie-2 signaling pathway contributes to the diabetes-associated impairment of angiogenesis. Protein tyrosine phosphatase (PTP) has a critical role in the regulation of insulin signal by inhibition of tyrosine kinase phosphorylation. In present study, we examined the role of protein tyrosine phosphatase-1 (SHP-1) in diabetes-associated impairment of Ang-1/Tie-2 angiogenic signaling and angiogenesis. SHP-1 expression was significantly increased in diabetic db/db mouse hearts. Furthermore, SHP-1 bond to Tie-2 receptor and stimulation with Ang-1 led to SHP-1 dissociation from Tie-2 in mouse heart microvascular endothelial cell (MHMEC). Exposure of MHMEC to high glucose (HG, 30 mmol/L) increased SHP-1/Tie-2 association accompanied by a significant reduction of Tie-2 phosphorylation. Exposure of MHMEC to HG also blunted Ang-1-mediated SHP-1/Tie-2 dissociation. Knockdown of SHP-1 significantly attenuated HG-induced caspase-3 activation and apoptosis in MHMEC. Treatment with PTP inhibitors restored Ang-1-induced Akt/eNOS phosphorylation and angiogenesis. Our data implicate a critical role of SHP-1 in diabetes-associated vascular complications, and that upregulation of Ang-1/Tie-2 signaling by targeting SHP-1 should be considered as a new therapeutic strategy for the treatment of diabetes-associated impairment of angiogenesis.</p>\",\"PeriodicalId\":12109,\"journal\":{\"name\":\"Experimental Diabetes Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2012/836759\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Diabetes Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2012/836759\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/2/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Diabetes Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/836759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/2/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Inhibition of protein tyrosine phosphatase improves angiogenesis via enhancing Ang-1/Tie-2 signaling in diabetes.
Diabetes is associated with impairment of angiogenesis such as reduction of myocardial capillary formation. Our previous studies demonstrate that disruption of Angiopoietin-1 (Ang-1)/Tie-2 signaling pathway contributes to the diabetes-associated impairment of angiogenesis. Protein tyrosine phosphatase (PTP) has a critical role in the regulation of insulin signal by inhibition of tyrosine kinase phosphorylation. In present study, we examined the role of protein tyrosine phosphatase-1 (SHP-1) in diabetes-associated impairment of Ang-1/Tie-2 angiogenic signaling and angiogenesis. SHP-1 expression was significantly increased in diabetic db/db mouse hearts. Furthermore, SHP-1 bond to Tie-2 receptor and stimulation with Ang-1 led to SHP-1 dissociation from Tie-2 in mouse heart microvascular endothelial cell (MHMEC). Exposure of MHMEC to high glucose (HG, 30 mmol/L) increased SHP-1/Tie-2 association accompanied by a significant reduction of Tie-2 phosphorylation. Exposure of MHMEC to HG also blunted Ang-1-mediated SHP-1/Tie-2 dissociation. Knockdown of SHP-1 significantly attenuated HG-induced caspase-3 activation and apoptosis in MHMEC. Treatment with PTP inhibitors restored Ang-1-induced Akt/eNOS phosphorylation and angiogenesis. Our data implicate a critical role of SHP-1 in diabetes-associated vascular complications, and that upregulation of Ang-1/Tie-2 signaling by targeting SHP-1 should be considered as a new therapeutic strategy for the treatment of diabetes-associated impairment of angiogenesis.