我该留下还是走?eps和ephrin在神经元迁移中的作用。

Q1 Medicine Neurosignals Pub Date : 2012-01-01 Epub Date: 2012-03-27 DOI:10.1159/000333784
Jennifer Rodger, Lorena Salvatore, Paolo Migani
{"title":"我该留下还是走?eps和ephrin在神经元迁移中的作用。","authors":"Jennifer Rodger,&nbsp;Lorena Salvatore,&nbsp;Paolo Migani","doi":"10.1159/000333784","DOIUrl":null,"url":null,"abstract":"<p><p>In neuroscience, Ephs and ephrins are perhaps best known for their role in axon guidance. It was first shown in the visual system that graded expression of these proteins is instrumental in providing molecular coordinates that define topographic maps, particularly in the visual system, but also in the auditory, vomeronasal and somatosensory systems as well as in the hippocampus, cerebellum and other structures. Perhaps unsurprisingly, the role of these proteins in regulating cell-cell interactions also has an impact on cell mobility, with evidence that Eph-ephrin interactions segregate cell populations based on contact-mediated attraction or repulsion. Consistent with these studies, evidence has accumulated that Ephs and ephrins play important roles in the migration of specific cell populations in the developing and adult brain. This review focusses on two examples of neuronal migration that require Eph/ephrin signalling - radial and tangential migration of neurons in cortical development and the migration of newly generated neurons along the rostral migratory stream to the olfactory bulb in the adult brain. We discuss the challenge involved in understanding how cells determine whether they respond to signals by migration or axon guidance.</p>","PeriodicalId":19171,"journal":{"name":"Neurosignals","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000333784","citationCount":"25","resultStr":"{\"title\":\"Should I stay or should I go? Ephs and ephrins in neuronal migration.\",\"authors\":\"Jennifer Rodger,&nbsp;Lorena Salvatore,&nbsp;Paolo Migani\",\"doi\":\"10.1159/000333784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In neuroscience, Ephs and ephrins are perhaps best known for their role in axon guidance. It was first shown in the visual system that graded expression of these proteins is instrumental in providing molecular coordinates that define topographic maps, particularly in the visual system, but also in the auditory, vomeronasal and somatosensory systems as well as in the hippocampus, cerebellum and other structures. Perhaps unsurprisingly, the role of these proteins in regulating cell-cell interactions also has an impact on cell mobility, with evidence that Eph-ephrin interactions segregate cell populations based on contact-mediated attraction or repulsion. Consistent with these studies, evidence has accumulated that Ephs and ephrins play important roles in the migration of specific cell populations in the developing and adult brain. This review focusses on two examples of neuronal migration that require Eph/ephrin signalling - radial and tangential migration of neurons in cortical development and the migration of newly generated neurons along the rostral migratory stream to the olfactory bulb in the adult brain. We discuss the challenge involved in understanding how cells determine whether they respond to signals by migration or axon guidance.</p>\",\"PeriodicalId\":19171,\"journal\":{\"name\":\"Neurosignals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000333784\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurosignals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000333784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/3/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurosignals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000333784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/3/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 25

摘要

在神经科学中,Ephs和ephrin可能最为人所知的是它们在轴突引导中的作用。首先在视觉系统中发现,这些蛋白质的分级表达有助于提供定义地形图的分子坐标,特别是在视觉系统中,但也在听觉、犁头鼻和体感觉系统以及海马、小脑和其他结构中。也许不足为奇的是,这些蛋白在调节细胞间相互作用中的作用也对细胞的移动性有影响,有证据表明,ephrin相互作用根据接触介导的吸引或排斥来分离细胞群。与这些研究一致,越来越多的证据表明,eps和ephrins在发育和成人大脑中特定细胞群的迁移中起着重要作用。本文综述了两个需要Eph/ephrin信号传导的神经元迁移的例子——皮层发育过程中神经元的径向和切向迁移以及成年大脑中新生成的神经元沿吻侧迁移流向嗅球的迁移。我们讨论了理解细胞如何决定它们是否通过迁移或轴突引导对信号作出反应所涉及的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Should I stay or should I go? Ephs and ephrins in neuronal migration.

In neuroscience, Ephs and ephrins are perhaps best known for their role in axon guidance. It was first shown in the visual system that graded expression of these proteins is instrumental in providing molecular coordinates that define topographic maps, particularly in the visual system, but also in the auditory, vomeronasal and somatosensory systems as well as in the hippocampus, cerebellum and other structures. Perhaps unsurprisingly, the role of these proteins in regulating cell-cell interactions also has an impact on cell mobility, with evidence that Eph-ephrin interactions segregate cell populations based on contact-mediated attraction or repulsion. Consistent with these studies, evidence has accumulated that Ephs and ephrins play important roles in the migration of specific cell populations in the developing and adult brain. This review focusses on two examples of neuronal migration that require Eph/ephrin signalling - radial and tangential migration of neurons in cortical development and the migration of newly generated neurons along the rostral migratory stream to the olfactory bulb in the adult brain. We discuss the challenge involved in understanding how cells determine whether they respond to signals by migration or axon guidance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurosignals
Neurosignals 医学-神经科学
CiteScore
3.40
自引率
0.00%
发文量
3
审稿时长
>12 weeks
期刊介绍: Neurosignals is an international journal dedicated to publishing original articles and reviews in the field of neuronal communication. Novel findings related to signaling molecules, channels and transporters, pathways and networks that are associated with development and function of the nervous system are welcome. The scope of the journal includes genetics, molecular biology, bioinformatics, (patho)physiology, (patho)biochemistry, pharmacology & toxicology, imaging and clinical neurology & psychiatry. Reported observations should significantly advance our understanding of neuronal signaling in health & disease and be presented in a format applicable to an interdisciplinary readership.
期刊最新文献
Aberrant Hippocampal Neuroregenerative Plasticity in Schizophrenia: Reactive Neuroblastosis as a Possible Pathocellular Mechanism of Hallucination. A Narrative Review - Therapy Options and Therapy Failure in Retinoblastoma. Therapy Failure and Resistance Mechanism in Eyelid and Ocular Surface Tumors. Therapy Resistance and Failure in Uveal Melanoma Interventional Radiotherapy (Brachytherapy) in Eyelid and Ocular Surface Tumors: A Review for Treatment of Naïve and Recurrent Malignancies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1