达尔盐耐药和达尔盐敏感大鼠压力利尿和压力钠尿的机制。

Q1 Biochemistry, Genetics and Molecular Biology BMC Physiology Pub Date : 2012-05-14 DOI:10.1186/1472-6793-12-6
Daniel A Beard, Muriel Mescam
{"title":"达尔盐耐药和达尔盐敏感大鼠压力利尿和压力钠尿的机制。","authors":"Daniel A Beard,&nbsp;Muriel Mescam","doi":"10.1186/1472-6793-12-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Data on blood flow regulation, renal filtration, and urine output in salt-sensitive Dahl S rats fed on high-salt (hypertensive) and low-salt (prehypertensive) diets and salt-resistant Dahl R rats fed on high-salt diets were analyzed using a mathematical model of renal blood flow regulation, glomerular filtration, and solute transport in a nephron.</p><p><strong>Results: </strong>The mechanism of pressure-diuresis and pressure-natriuresis that emerges from simulation of the integrated systems is that relatively small increases in glomerular filtration that follow from increases in renal arterial pressure cause relatively large increases in urine and sodium output. Furthermore, analysis reveals the minimal differences between the experimental cases necessary to explain the observed data. It is determined that differences in renal afferent and efferent arterial resistances are able to explain all of the qualitative differences in observed flows, filtration rates, and glomerular pressure as well as the differences in the pressure-natriuresis and pressure-diuresis relationships in the three groups. The model is able to satisfactorily explain data from all three groups without varying parameters associated with glomerular filtration or solute transport in the nephron component of the model.</p><p><strong>Conclusions: </strong>Thus the differences between the experimental groups are explained solely in terms of difference in blood flow regulation. This finding is consistent with the hypothesis that, if a shift in the pressure-natriuresis relationship is the primary cause of elevated arterial pressure in the Dahl S rat, then alternation in how renal afferent and efferent arterial resistances are regulated represents the primary cause of chronic hypertension in the Dahl S rat.</p>","PeriodicalId":35905,"journal":{"name":"BMC Physiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1472-6793-12-6","citationCount":"18","resultStr":"{\"title\":\"Mechanisms of pressure-diuresis and pressure-natriuresis in Dahl salt-resistant and Dahl salt-sensitive rats.\",\"authors\":\"Daniel A Beard,&nbsp;Muriel Mescam\",\"doi\":\"10.1186/1472-6793-12-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Data on blood flow regulation, renal filtration, and urine output in salt-sensitive Dahl S rats fed on high-salt (hypertensive) and low-salt (prehypertensive) diets and salt-resistant Dahl R rats fed on high-salt diets were analyzed using a mathematical model of renal blood flow regulation, glomerular filtration, and solute transport in a nephron.</p><p><strong>Results: </strong>The mechanism of pressure-diuresis and pressure-natriuresis that emerges from simulation of the integrated systems is that relatively small increases in glomerular filtration that follow from increases in renal arterial pressure cause relatively large increases in urine and sodium output. Furthermore, analysis reveals the minimal differences between the experimental cases necessary to explain the observed data. It is determined that differences in renal afferent and efferent arterial resistances are able to explain all of the qualitative differences in observed flows, filtration rates, and glomerular pressure as well as the differences in the pressure-natriuresis and pressure-diuresis relationships in the three groups. The model is able to satisfactorily explain data from all three groups without varying parameters associated with glomerular filtration or solute transport in the nephron component of the model.</p><p><strong>Conclusions: </strong>Thus the differences between the experimental groups are explained solely in terms of difference in blood flow regulation. This finding is consistent with the hypothesis that, if a shift in the pressure-natriuresis relationship is the primary cause of elevated arterial pressure in the Dahl S rat, then alternation in how renal afferent and efferent arterial resistances are regulated represents the primary cause of chronic hypertension in the Dahl S rat.</p>\",\"PeriodicalId\":35905,\"journal\":{\"name\":\"BMC Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/1472-6793-12-6\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/1472-6793-12-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1472-6793-12-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 18

摘要

研究背景:采用肾血流调节、肾小球滤过和肾内溶质转运的数学模型,对高盐(高血压)和低盐(高血压前期)饮食的盐敏感型达尔S大鼠和高盐饮食的耐盐型达尔R大鼠的血流调节、肾滤过和尿量数据进行分析。结果:综合系统模拟中出现的压力利尿和压力钠尿的机制是,肾动脉压升高导致肾小球滤过相对较小的增加,导致尿和钠输出相对较大的增加。此外,分析揭示了解释观测数据所需的实验案例之间的最小差异。可以确定,肾传入和传出动脉阻力的差异能够解释三组中观察到的血流、滤过率和肾小球压力的所有定性差异,以及尿钠压力和利尿压力关系的差异。该模型能够令人满意地解释所有三组的数据,而不需要改变与肾小球滤过或模型中肾元部分溶质运输相关的参数。结论:因此,实验组之间的差异完全可以从血流调节的差异来解释。这一发现与假设一致,即如果压力-尿钠关系的改变是Dahl S大鼠动脉压力升高的主要原因,那么肾脏传入和传出动脉阻力调节方式的改变是Dahl S大鼠慢性高血压的主要原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanisms of pressure-diuresis and pressure-natriuresis in Dahl salt-resistant and Dahl salt-sensitive rats.

Background: Data on blood flow regulation, renal filtration, and urine output in salt-sensitive Dahl S rats fed on high-salt (hypertensive) and low-salt (prehypertensive) diets and salt-resistant Dahl R rats fed on high-salt diets were analyzed using a mathematical model of renal blood flow regulation, glomerular filtration, and solute transport in a nephron.

Results: The mechanism of pressure-diuresis and pressure-natriuresis that emerges from simulation of the integrated systems is that relatively small increases in glomerular filtration that follow from increases in renal arterial pressure cause relatively large increases in urine and sodium output. Furthermore, analysis reveals the minimal differences between the experimental cases necessary to explain the observed data. It is determined that differences in renal afferent and efferent arterial resistances are able to explain all of the qualitative differences in observed flows, filtration rates, and glomerular pressure as well as the differences in the pressure-natriuresis and pressure-diuresis relationships in the three groups. The model is able to satisfactorily explain data from all three groups without varying parameters associated with glomerular filtration or solute transport in the nephron component of the model.

Conclusions: Thus the differences between the experimental groups are explained solely in terms of difference in blood flow regulation. This finding is consistent with the hypothesis that, if a shift in the pressure-natriuresis relationship is the primary cause of elevated arterial pressure in the Dahl S rat, then alternation in how renal afferent and efferent arterial resistances are regulated represents the primary cause of chronic hypertension in the Dahl S rat.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Physiology
BMC Physiology Biochemistry, Genetics and Molecular Biology-Physiology
CiteScore
9.60
自引率
0.00%
发文量
0
期刊介绍: BMC Physiology is an open access journal publishing original peer-reviewed research articles in cellular, tissue-level, organismal, functional, and developmental aspects of physiological processes. BMC Physiology (ISSN 1472-6793) is indexed/tracked/covered by PubMed, MEDLINE, BIOSIS, CAS, EMBASE, Scopus, Zoological Record and Google Scholar.
期刊最新文献
Exercise endurance capacity is markedly reduced due to impaired energy homeostasis during prolonged fasting in FABP4/5 deficient mice. Deficiency of the BMP Type I receptor ALK3 partly protects mice from anemia of inflammation. Claudin expression during early postnatal development of the murine cochlea. Regulation of Locomotor activity in fed, fasted, and food-restricted mice lacking tissue-type plasminogen activator. Adiponectin is required for maintaining normal body temperature in a cold environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1