预测相对代谢组转换(PRMT):从沿海海洋宏基因组数据集确定代谢转换。

Peter E Larsen, Frank R Collart, Dawn Field, Folker Meyer, Kevin P Keegan, Christopher S Henry, John McGrath, John Quinn, Jack A Gilbert
{"title":"预测相对代谢组转换(PRMT):从沿海海洋宏基因组数据集确定代谢转换。","authors":"Peter E Larsen,&nbsp;Frank R Collart,&nbsp;Dawn Field,&nbsp;Folker Meyer,&nbsp;Kevin P Keegan,&nbsp;Christopher S Henry,&nbsp;John McGrath,&nbsp;John Quinn,&nbsp;Jack A Gilbert","doi":"10.1186/2042-5783-1-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The world's oceans are home to a diverse array of microbial life whose metabolic activity helps to drive the earth's biogeochemical cycles. Metagenomic analysis has revolutionized our access to these communities, providing a system-scale perspective of microbial community interactions. However, while metagenome sequencing can provide useful estimates of the relative change in abundance of specific genes and taxa between environments or over time, this does not investigate the relative changes in the production or consumption of different metabolites.</p><p><strong>Results: </strong>We propose a methodology, Predicted Relative Metabolic Turnover (PRMT) that defines and enables exploration of metabolite-space inferred from the metagenome. Our analysis of metagenomic data from a time-series study in the Western English Channel demonstrated considerable correlations between predicted relative metabolic turnover and seasonal changes in abundance of measured environmental parameters as well as with observed seasonal changes in bacterial population structure.</p><p><strong>Conclusions: </strong>The PRMT method was successfully applied to metagenomic data to explore the Western English Channel microbial metabalome to generate specific, biologically testable hypotheses. Generated hypotheses linked organic phosphate utilization to Gammaproteobactaria, Plantcomycetes, and Betaproteobacteria, chitin degradation to Actinomycetes, and potential small molecule biosynthesis pathways for Lentisphaerae, Chlamydiae, and Crenarchaeota. The PRMT method can be applied as a general tool for the analysis of additional metagenomic or transcriptomic datasets.</p>","PeriodicalId":18538,"journal":{"name":"Microbial Informatics and Experimentation","volume":"1 1","pages":"4"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2042-5783-1-4","citationCount":"91","resultStr":"{\"title\":\"Predicted Relative Metabolomic Turnover (PRMT): determining metabolic turnover from a coastal marine metagenomic dataset.\",\"authors\":\"Peter E Larsen,&nbsp;Frank R Collart,&nbsp;Dawn Field,&nbsp;Folker Meyer,&nbsp;Kevin P Keegan,&nbsp;Christopher S Henry,&nbsp;John McGrath,&nbsp;John Quinn,&nbsp;Jack A Gilbert\",\"doi\":\"10.1186/2042-5783-1-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The world's oceans are home to a diverse array of microbial life whose metabolic activity helps to drive the earth's biogeochemical cycles. Metagenomic analysis has revolutionized our access to these communities, providing a system-scale perspective of microbial community interactions. However, while metagenome sequencing can provide useful estimates of the relative change in abundance of specific genes and taxa between environments or over time, this does not investigate the relative changes in the production or consumption of different metabolites.</p><p><strong>Results: </strong>We propose a methodology, Predicted Relative Metabolic Turnover (PRMT) that defines and enables exploration of metabolite-space inferred from the metagenome. Our analysis of metagenomic data from a time-series study in the Western English Channel demonstrated considerable correlations between predicted relative metabolic turnover and seasonal changes in abundance of measured environmental parameters as well as with observed seasonal changes in bacterial population structure.</p><p><strong>Conclusions: </strong>The PRMT method was successfully applied to metagenomic data to explore the Western English Channel microbial metabalome to generate specific, biologically testable hypotheses. Generated hypotheses linked organic phosphate utilization to Gammaproteobactaria, Plantcomycetes, and Betaproteobacteria, chitin degradation to Actinomycetes, and potential small molecule biosynthesis pathways for Lentisphaerae, Chlamydiae, and Crenarchaeota. The PRMT method can be applied as a general tool for the analysis of additional metagenomic or transcriptomic datasets.</p>\",\"PeriodicalId\":18538,\"journal\":{\"name\":\"Microbial Informatics and Experimentation\",\"volume\":\"1 1\",\"pages\":\"4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/2042-5783-1-4\",\"citationCount\":\"91\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Informatics and Experimentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/2042-5783-1-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Informatics and Experimentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/2042-5783-1-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 91

摘要

背景:世界海洋是各种微生物生命的家园,它们的代谢活动有助于推动地球的生物地球化学循环。宏基因组分析已经彻底改变了我们对这些群落的访问,提供了微生物群落相互作用的系统尺度视角。然而,虽然宏基因组测序可以提供特定基因和分类群在不同环境之间或随时间变化的相对变化的有用估计,但这并不能调查不同代谢物产生或消耗的相对变化。结果:我们提出了一种方法,预测相对代谢周转(PRMT),该方法定义并实现了从宏基因组推断的代谢物空间的探索。我们对来自西英吉利海峡时间序列研究的宏基因组数据的分析表明,预测的相对代谢周转率与测量的环境参数丰度的季节性变化以及观察到的细菌种群结构的季节性变化之间存在相当大的相关性。结论:PRMT方法已成功应用于宏基因组数据,以探索西英吉利海峡微生物代谢组,以产生特异性的,生物学上可测试的假设。提出了有机磷酸盐利用与γ变形杆菌、植物菌和β变形菌有关的假设,几丁质降解为放线菌,以及慢孢菌、衣原菌和绿原菌的潜在小分子生物合成途径。PRMT方法可以作为分析其他宏基因组或转录组数据集的通用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicted Relative Metabolomic Turnover (PRMT): determining metabolic turnover from a coastal marine metagenomic dataset.

Background: The world's oceans are home to a diverse array of microbial life whose metabolic activity helps to drive the earth's biogeochemical cycles. Metagenomic analysis has revolutionized our access to these communities, providing a system-scale perspective of microbial community interactions. However, while metagenome sequencing can provide useful estimates of the relative change in abundance of specific genes and taxa between environments or over time, this does not investigate the relative changes in the production or consumption of different metabolites.

Results: We propose a methodology, Predicted Relative Metabolic Turnover (PRMT) that defines and enables exploration of metabolite-space inferred from the metagenome. Our analysis of metagenomic data from a time-series study in the Western English Channel demonstrated considerable correlations between predicted relative metabolic turnover and seasonal changes in abundance of measured environmental parameters as well as with observed seasonal changes in bacterial population structure.

Conclusions: The PRMT method was successfully applied to metagenomic data to explore the Western English Channel microbial metabalome to generate specific, biologically testable hypotheses. Generated hypotheses linked organic phosphate utilization to Gammaproteobactaria, Plantcomycetes, and Betaproteobacteria, chitin degradation to Actinomycetes, and potential small molecule biosynthesis pathways for Lentisphaerae, Chlamydiae, and Crenarchaeota. The PRMT method can be applied as a general tool for the analysis of additional metagenomic or transcriptomic datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A systematic search for discriminating sites in the 16S ribosomal RNA gene. Deep sequencing of evolving pathogen populations: applications, errors, and bioinformatic solutions. Sialic acid utilization by Cronobacter sakazakii. Beginner's guide to comparative bacterial genome analysis using next-generation sequence data. An efficient rRNA removal method for RNA sequencing in GC-rich bacteria.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1