Joseph G Desloge, Charlotte M Reed, Louis D Braida, Zachary D Perez, Lorraine A Delhorne
{"title":"真实和模拟听力障碍听者的听觉滤波器特性。","authors":"Joseph G Desloge, Charlotte M Reed, Louis D Braida, Zachary D Perez, Lorraine A Delhorne","doi":"10.1177/1084713812445510","DOIUrl":null,"url":null,"abstract":"<p><p>Functional simulation of sensorineural hearing impairment is an important research tool that can elucidate the nature of hearing impairments and suggest or eliminate compensatory signal-processing schemes. The objective of the current study was to evaluate the capability of an audibility-based functional simulation of hearing loss to reproduce the auditory-filter characteristics of listeners with sensorineural hearing loss. The hearing-loss simulation used either threshold-elevating noise alone or a combination of threshold-elevating noise and multiband expansion to reproduce the audibility-based characteristics of the loss (including detection thresholds, dynamic range, and loudness recruitment). The hearing losses of 10 listeners with bilateral, mild-to-severe hearing loss were simulated in 10 corresponding groups of 3 age-matched normal-hearing listeners. Frequency selectivity was measured using a notched-noise masking paradigm at five probe frequencies in the range of 250 to 4000 Hz with a fixed probe level of either 70 dB SPL or 8 dB SL (whichever was greater) and probe duration of 200 ms. The hearing-loss simulation reproduced the absolute thresholds of individual hearing-impaired listeners with an average root-mean-squared (RMS) difference of 2.2 dB and the notched-noise masked thresholds with an RMS difference of 5.6 dB. A rounded-exponential model of the notched-noise data was used to estimate equivalent rectangular bandwidths and slopes of the auditory filters. For some subjects and probe frequencies, the simulations were accurate in reproducing the auditory-filter characteristics of the hearing-impaired listeners. In other cases, however, the simulations underestimated the magnitude of the auditory bandwidths for the hearing-impaired listeners, which suggests the possibility of suprathreshold deficits.</p>","PeriodicalId":48972,"journal":{"name":"Trends in Amplification","volume":"16 1","pages":"19-39"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4040846/pdf/10.1177_1084713812445510.pdf","citationCount":"0","resultStr":"{\"title\":\"Auditory-filter characteristics for listeners with real and simulated hearing impairment.\",\"authors\":\"Joseph G Desloge, Charlotte M Reed, Louis D Braida, Zachary D Perez, Lorraine A Delhorne\",\"doi\":\"10.1177/1084713812445510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Functional simulation of sensorineural hearing impairment is an important research tool that can elucidate the nature of hearing impairments and suggest or eliminate compensatory signal-processing schemes. The objective of the current study was to evaluate the capability of an audibility-based functional simulation of hearing loss to reproduce the auditory-filter characteristics of listeners with sensorineural hearing loss. The hearing-loss simulation used either threshold-elevating noise alone or a combination of threshold-elevating noise and multiband expansion to reproduce the audibility-based characteristics of the loss (including detection thresholds, dynamic range, and loudness recruitment). The hearing losses of 10 listeners with bilateral, mild-to-severe hearing loss were simulated in 10 corresponding groups of 3 age-matched normal-hearing listeners. Frequency selectivity was measured using a notched-noise masking paradigm at five probe frequencies in the range of 250 to 4000 Hz with a fixed probe level of either 70 dB SPL or 8 dB SL (whichever was greater) and probe duration of 200 ms. The hearing-loss simulation reproduced the absolute thresholds of individual hearing-impaired listeners with an average root-mean-squared (RMS) difference of 2.2 dB and the notched-noise masked thresholds with an RMS difference of 5.6 dB. A rounded-exponential model of the notched-noise data was used to estimate equivalent rectangular bandwidths and slopes of the auditory filters. For some subjects and probe frequencies, the simulations were accurate in reproducing the auditory-filter characteristics of the hearing-impaired listeners. In other cases, however, the simulations underestimated the magnitude of the auditory bandwidths for the hearing-impaired listeners, which suggests the possibility of suprathreshold deficits.</p>\",\"PeriodicalId\":48972,\"journal\":{\"name\":\"Trends in Amplification\",\"volume\":\"16 1\",\"pages\":\"19-39\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4040846/pdf/10.1177_1084713812445510.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Amplification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1084713812445510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Amplification","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1084713812445510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Auditory-filter characteristics for listeners with real and simulated hearing impairment.
Functional simulation of sensorineural hearing impairment is an important research tool that can elucidate the nature of hearing impairments and suggest or eliminate compensatory signal-processing schemes. The objective of the current study was to evaluate the capability of an audibility-based functional simulation of hearing loss to reproduce the auditory-filter characteristics of listeners with sensorineural hearing loss. The hearing-loss simulation used either threshold-elevating noise alone or a combination of threshold-elevating noise and multiband expansion to reproduce the audibility-based characteristics of the loss (including detection thresholds, dynamic range, and loudness recruitment). The hearing losses of 10 listeners with bilateral, mild-to-severe hearing loss were simulated in 10 corresponding groups of 3 age-matched normal-hearing listeners. Frequency selectivity was measured using a notched-noise masking paradigm at five probe frequencies in the range of 250 to 4000 Hz with a fixed probe level of either 70 dB SPL or 8 dB SL (whichever was greater) and probe duration of 200 ms. The hearing-loss simulation reproduced the absolute thresholds of individual hearing-impaired listeners with an average root-mean-squared (RMS) difference of 2.2 dB and the notched-noise masked thresholds with an RMS difference of 5.6 dB. A rounded-exponential model of the notched-noise data was used to estimate equivalent rectangular bandwidths and slopes of the auditory filters. For some subjects and probe frequencies, the simulations were accurate in reproducing the auditory-filter characteristics of the hearing-impaired listeners. In other cases, however, the simulations underestimated the magnitude of the auditory bandwidths for the hearing-impaired listeners, which suggests the possibility of suprathreshold deficits.