Qiang Zhu, Artem R Oganov, Colin W Glass, Harold T Stokes
{"title":"分子晶体结构预测的约束进化算法:方法与应用。","authors":"Qiang Zhu, Artem R Oganov, Colin W Glass, Harold T Stokes","doi":"10.1107/S0108768112017466","DOIUrl":null,"url":null,"abstract":"<p><p>Evolutionary crystal structure prediction proved to be a powerful approach for studying a wide range of materials. Here we present a specifically designed algorithm for the prediction of the structure of complex crystals consisting of well defined molecular units. The main feature of this new approach is that each unit is treated as a whole body, which drastically reduces the search space and improves the efficiency, but necessitates the introduction of new variation operators described here. To increase the diversity of the population of structures, the initial population and part (~20%) of the new generations are produced using space-group symmetry combined with random cell parameters, and random positions and orientations of molecular units. We illustrate the efficiency and reliability of this approach by a number of tests (ice, ammonia, carbon dioxide, methane, benzene, glycine and butane-1,4-diammonium dibromide). This approach easily predicts the crystal structure of methane A containing 21 methane molecules (105 atoms) per unit cell. We demonstrate that this new approach also has a high potential for the study of complex inorganic crystals as shown on examples of a complex hydrogen storage material Mg(BH(4))(2) and elemental boron.</p>","PeriodicalId":7107,"journal":{"name":"Acta Crystallographica Section B-structural Science","volume":"68 Pt 3","pages":"215-26"},"PeriodicalIF":1.9000,"publicationDate":"2012-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1107/S0108768112017466","citationCount":"109","resultStr":"{\"title\":\"Constrained evolutionary algorithm for structure prediction of molecular crystals: methodology and applications.\",\"authors\":\"Qiang Zhu, Artem R Oganov, Colin W Glass, Harold T Stokes\",\"doi\":\"10.1107/S0108768112017466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Evolutionary crystal structure prediction proved to be a powerful approach for studying a wide range of materials. Here we present a specifically designed algorithm for the prediction of the structure of complex crystals consisting of well defined molecular units. The main feature of this new approach is that each unit is treated as a whole body, which drastically reduces the search space and improves the efficiency, but necessitates the introduction of new variation operators described here. To increase the diversity of the population of structures, the initial population and part (~20%) of the new generations are produced using space-group symmetry combined with random cell parameters, and random positions and orientations of molecular units. We illustrate the efficiency and reliability of this approach by a number of tests (ice, ammonia, carbon dioxide, methane, benzene, glycine and butane-1,4-diammonium dibromide). This approach easily predicts the crystal structure of methane A containing 21 methane molecules (105 atoms) per unit cell. We demonstrate that this new approach also has a high potential for the study of complex inorganic crystals as shown on examples of a complex hydrogen storage material Mg(BH(4))(2) and elemental boron.</p>\",\"PeriodicalId\":7107,\"journal\":{\"name\":\"Acta Crystallographica Section B-structural Science\",\"volume\":\"68 Pt 3\",\"pages\":\"215-26\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2012-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1107/S0108768112017466\",\"citationCount\":\"109\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica Section B-structural Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1107/S0108768112017466\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/5/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section B-structural Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1107/S0108768112017466","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/5/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Constrained evolutionary algorithm for structure prediction of molecular crystals: methodology and applications.
Evolutionary crystal structure prediction proved to be a powerful approach for studying a wide range of materials. Here we present a specifically designed algorithm for the prediction of the structure of complex crystals consisting of well defined molecular units. The main feature of this new approach is that each unit is treated as a whole body, which drastically reduces the search space and improves the efficiency, but necessitates the introduction of new variation operators described here. To increase the diversity of the population of structures, the initial population and part (~20%) of the new generations are produced using space-group symmetry combined with random cell parameters, and random positions and orientations of molecular units. We illustrate the efficiency and reliability of this approach by a number of tests (ice, ammonia, carbon dioxide, methane, benzene, glycine and butane-1,4-diammonium dibromide). This approach easily predicts the crystal structure of methane A containing 21 methane molecules (105 atoms) per unit cell. We demonstrate that this new approach also has a high potential for the study of complex inorganic crystals as shown on examples of a complex hydrogen storage material Mg(BH(4))(2) and elemental boron.
期刊介绍:
Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials publishes scientific articles related to the structural science of compounds and materials in the widest sense. Knowledge of the arrangements of atoms, including their temporal variations and dependencies on temperature and pressure, is often the key to understanding physical and chemical phenomena and is crucial for the design of new materials and supramolecular devices. Acta Crystallographica B is the forum for the publication of such contributions. Scientific developments based on experimental studies as well as those based on theoretical approaches, including crystal-structure prediction, structure-property relations and the use of databases of crystal structures, are published.