具有孤立四面体阴离子的A2MX4化合物(X = O, F)的结构化学:寻找最密集的结构类型。

IF 1.9 3区 化学 Acta Crystallographica Section B-structural Science Pub Date : 2012-06-01 Epub Date: 2012-05-17 DOI:10.1107/S010876811201419X
Vladimir Nalbandyan, Anastasiya Novikova
{"title":"具有孤立四面体阴离子的A2MX4化合物(X = O, F)的结构化学:寻找最密集的结构类型。","authors":"Vladimir Nalbandyan,&nbsp;Anastasiya Novikova","doi":"10.1107/S010876811201419X","DOIUrl":null,"url":null,"abstract":"<p><p>The packing density of various structures is important not only for understanding and the prediction of high-pressure phase transitions, but also because of its reported correlation with thermodynamic stability. Plotting the cube root of formula volume against the cation radii (R) for nine morphotropic series with isolated tetrahedral anions, A(2)MO(4) (M = Si, Ge, S, Se, Cr, Mn, Mo, W) and A(2)BeF(4), permits the comparison of packing densities for 13 structure types (about 80 individual compounds and several solid solutions) stable at (or near) ambient temperature. The spinel type is the densest. The next densest types are those of K(2)MoO(4), Tl(2)CrO(4), β-Ca(2)SiO(4), β-K(2)SO(4), Ag(2)CrO(4) and Sr(2)GeO(4). In three series (M = Ge, Mo, W) the densest type comes with somewhat intermediate values of R, and not the largest, in contrast to the classical homology rule. Another contradiction with traditional views is that some of the densest phases have abnormally low overall binding energies. The correlation between packing density and coordination number (CN) is better when CN of A counts entire MX(4) groups rather than individual X atoms; many, but not all, A(2)MX(4) structures have binary A(2)M analogues (of course, A and M are not necessarily the same in these structure types). The most frequent arrangement of A around M is of the Ni(2)In type: a (distorted) pentacapped trigonal prism.</p>","PeriodicalId":7107,"journal":{"name":"Acta Crystallographica Section B-structural Science","volume":"68 Pt 3","pages":"227-39"},"PeriodicalIF":1.9000,"publicationDate":"2012-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1107/S010876811201419X","citationCount":"11","resultStr":"{\"title\":\"Structural chemistry of A2MX4 compounds (X = O, F) with isolated tetrahedral anions: search for the densest structure types.\",\"authors\":\"Vladimir Nalbandyan,&nbsp;Anastasiya Novikova\",\"doi\":\"10.1107/S010876811201419X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The packing density of various structures is important not only for understanding and the prediction of high-pressure phase transitions, but also because of its reported correlation with thermodynamic stability. Plotting the cube root of formula volume against the cation radii (R) for nine morphotropic series with isolated tetrahedral anions, A(2)MO(4) (M = Si, Ge, S, Se, Cr, Mn, Mo, W) and A(2)BeF(4), permits the comparison of packing densities for 13 structure types (about 80 individual compounds and several solid solutions) stable at (or near) ambient temperature. The spinel type is the densest. The next densest types are those of K(2)MoO(4), Tl(2)CrO(4), β-Ca(2)SiO(4), β-K(2)SO(4), Ag(2)CrO(4) and Sr(2)GeO(4). In three series (M = Ge, Mo, W) the densest type comes with somewhat intermediate values of R, and not the largest, in contrast to the classical homology rule. Another contradiction with traditional views is that some of the densest phases have abnormally low overall binding energies. The correlation between packing density and coordination number (CN) is better when CN of A counts entire MX(4) groups rather than individual X atoms; many, but not all, A(2)MX(4) structures have binary A(2)M analogues (of course, A and M are not necessarily the same in these structure types). The most frequent arrangement of A around M is of the Ni(2)In type: a (distorted) pentacapped trigonal prism.</p>\",\"PeriodicalId\":7107,\"journal\":{\"name\":\"Acta Crystallographica Section B-structural Science\",\"volume\":\"68 Pt 3\",\"pages\":\"227-39\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2012-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1107/S010876811201419X\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica Section B-structural Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1107/S010876811201419X\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/5/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section B-structural Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1107/S010876811201419X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/5/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

各种结构的堆积密度不仅对理解和预测高压相变很重要,而且还与热力学稳定性有关。对含有孤立四面体阴离子的9个致形系列,A(2)MO(4) (M = Si, Ge, S, Se, Cr, Mn, MO, W)和A(2)BeF(4),绘制公式体积的立方根与阳离子半径(R)的关系图,可以比较13种结构类型(约80种单独的化合物和几种固溶体)在(或接近)环境温度下稳定的堆积密度。尖晶石型密度最大。其次是K(2)MoO(4)、Tl(2)CrO(4)、β-Ca(2)SiO(4)、β-K(2)SO(4)、Ag(2)CrO(4)和Sr(2)GeO(4)。在三个级数(M = Ge, Mo, W)中,密度最大的类型具有R的一些中间值,而不是最大的,这与经典的同调规则相反。与传统观点的另一个矛盾是,一些密度最大的相具有异常低的总结合能。当A的CN计数整个MX(4)基团而不是单个X原子时,堆积密度与配位数(CN)的相关性更好;许多(但不是全部)A(2)MX(4)结构具有二元A(2)M类似物(当然,在这些结构类型中A和M不一定相同)。A在M周围最常见的排列是Ni(2)In型:一个(扭曲的)五头三角棱镜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural chemistry of A2MX4 compounds (X = O, F) with isolated tetrahedral anions: search for the densest structure types.

The packing density of various structures is important not only for understanding and the prediction of high-pressure phase transitions, but also because of its reported correlation with thermodynamic stability. Plotting the cube root of formula volume against the cation radii (R) for nine morphotropic series with isolated tetrahedral anions, A(2)MO(4) (M = Si, Ge, S, Se, Cr, Mn, Mo, W) and A(2)BeF(4), permits the comparison of packing densities for 13 structure types (about 80 individual compounds and several solid solutions) stable at (or near) ambient temperature. The spinel type is the densest. The next densest types are those of K(2)MoO(4), Tl(2)CrO(4), β-Ca(2)SiO(4), β-K(2)SO(4), Ag(2)CrO(4) and Sr(2)GeO(4). In three series (M = Ge, Mo, W) the densest type comes with somewhat intermediate values of R, and not the largest, in contrast to the classical homology rule. Another contradiction with traditional views is that some of the densest phases have abnormally low overall binding energies. The correlation between packing density and coordination number (CN) is better when CN of A counts entire MX(4) groups rather than individual X atoms; many, but not all, A(2)MX(4) structures have binary A(2)M analogues (of course, A and M are not necessarily the same in these structure types). The most frequent arrangement of A around M is of the Ni(2)In type: a (distorted) pentacapped trigonal prism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
5.30%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials publishes scientific articles related to the structural science of compounds and materials in the widest sense. Knowledge of the arrangements of atoms, including their temporal variations and dependencies on temperature and pressure, is often the key to understanding physical and chemical phenomena and is crucial for the design of new materials and supramolecular devices. Acta Crystallographica B is the forum for the publication of such contributions. Scientific developments based on experimental studies as well as those based on theoretical approaches, including crystal-structure prediction, structure-property relations and the use of databases of crystal structures, are published.
期刊最新文献
The charge-flipping algorithm in crystallography. The role of the coordination defect (CD) in the structures of anion-deficient, fluorite-related compounds. Structural transformations in the low-temperature grown GaAs with superlattices of Sb and P δ-layers. Electronic influence of β-diketonato-type ligands on the coordination of 1,5-cyclooctadiene to palladium(II) as defined by 'Venus fly trap' geometric parameters. Weak intermolecular hydrogen and halogen interactions in an isomorphous halogen series of pseudoterpyridine Zn(II) complexes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1