Dino Re, Davide Augusti, Gabriele Augusti, Agostino Giovannetti
{"title":"低压喷砂氧化锆的早期粘结强度:一种自粘水泥的评价。","authors":"Dino Re, Davide Augusti, Gabriele Augusti, Agostino Giovannetti","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The debonding of a densely sintered zirconia prosthesis is a clinically reported, and undesirable event. A standardized, affordable adhesive cementation protocol for zirconia-based restorations is not yet available. The aim of this investigation was to assess the influence of several surface treatments on the initial shear bond strength of self-adhesive resin cement to densely sintered zirconia ceramic. Thirty densely sintered zirconia cylinders were divided into three groups (n = 10). Each of them received a different surface treatment: control (No_T), with the zirconia surface unconditioned; low pressure air abrasion (Sand_S) (50 µm, 1 bar); and standardized air abrasion (Sand_H) (50 µm, 2.8 bar). Three more surface-treated only specimens were addressed to scanning electron microscope (SEM) for qualitative observations. After specimen fabrication, self-adhesive cementceramic interface was analyzed using SBS (shear bond strength) test. Mean shear bond strengths (MPa) obtained for Sand_H and Sand_S were 16.24 ± 2.95 and 16.01 ± 2.68, respectively; no statistically significant difference (P = 0.8580) was found between sandblasted groups. Low-pressure air abrasion positively affected the initial self-adhesive cement adhesion to zirconia with respect to the No_T control group; however it did not prevent scratches and the formation of microcracks on the ceramic surfaces.</p>","PeriodicalId":88322,"journal":{"name":"The European journal of esthetic dentistry : official journal of the European Academy of Esthetic Dentistry","volume":"7 2","pages":"164-75"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Early bond strength to low-pressure sandblasted zirconia: evaluation of a self-adhesive cement.\",\"authors\":\"Dino Re, Davide Augusti, Gabriele Augusti, Agostino Giovannetti\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The debonding of a densely sintered zirconia prosthesis is a clinically reported, and undesirable event. A standardized, affordable adhesive cementation protocol for zirconia-based restorations is not yet available. The aim of this investigation was to assess the influence of several surface treatments on the initial shear bond strength of self-adhesive resin cement to densely sintered zirconia ceramic. Thirty densely sintered zirconia cylinders were divided into three groups (n = 10). Each of them received a different surface treatment: control (No_T), with the zirconia surface unconditioned; low pressure air abrasion (Sand_S) (50 µm, 1 bar); and standardized air abrasion (Sand_H) (50 µm, 2.8 bar). Three more surface-treated only specimens were addressed to scanning electron microscope (SEM) for qualitative observations. After specimen fabrication, self-adhesive cementceramic interface was analyzed using SBS (shear bond strength) test. Mean shear bond strengths (MPa) obtained for Sand_H and Sand_S were 16.24 ± 2.95 and 16.01 ± 2.68, respectively; no statistically significant difference (P = 0.8580) was found between sandblasted groups. Low-pressure air abrasion positively affected the initial self-adhesive cement adhesion to zirconia with respect to the No_T control group; however it did not prevent scratches and the formation of microcracks on the ceramic surfaces.</p>\",\"PeriodicalId\":88322,\"journal\":{\"name\":\"The European journal of esthetic dentistry : official journal of the European Academy of Esthetic Dentistry\",\"volume\":\"7 2\",\"pages\":\"164-75\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European journal of esthetic dentistry : official journal of the European Academy of Esthetic Dentistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European journal of esthetic dentistry : official journal of the European Academy of Esthetic Dentistry","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Early bond strength to low-pressure sandblasted zirconia: evaluation of a self-adhesive cement.
The debonding of a densely sintered zirconia prosthesis is a clinically reported, and undesirable event. A standardized, affordable adhesive cementation protocol for zirconia-based restorations is not yet available. The aim of this investigation was to assess the influence of several surface treatments on the initial shear bond strength of self-adhesive resin cement to densely sintered zirconia ceramic. Thirty densely sintered zirconia cylinders were divided into three groups (n = 10). Each of them received a different surface treatment: control (No_T), with the zirconia surface unconditioned; low pressure air abrasion (Sand_S) (50 µm, 1 bar); and standardized air abrasion (Sand_H) (50 µm, 2.8 bar). Three more surface-treated only specimens were addressed to scanning electron microscope (SEM) for qualitative observations. After specimen fabrication, self-adhesive cementceramic interface was analyzed using SBS (shear bond strength) test. Mean shear bond strengths (MPa) obtained for Sand_H and Sand_S were 16.24 ± 2.95 and 16.01 ± 2.68, respectively; no statistically significant difference (P = 0.8580) was found between sandblasted groups. Low-pressure air abrasion positively affected the initial self-adhesive cement adhesion to zirconia with respect to the No_T control group; however it did not prevent scratches and the formation of microcracks on the ceramic surfaces.