多元多元线性回归。

Ya Su, Xinbo Gao, Xuelong Li, Dacheng Tao
{"title":"多元多元线性回归。","authors":"Ya Su,&nbsp;Xinbo Gao,&nbsp;Xuelong Li,&nbsp;Dacheng Tao","doi":"10.1109/TSMCB.2012.2195171","DOIUrl":null,"url":null,"abstract":"<p><p>Conventional regression methods, such as multivariate linear regression (MLR) and its extension principal component regression (PCR), deal well with the situations that the data are of the form of low-dimensional vector. When the dimension grows higher, it leads to the under sample problem (USP): the dimensionality of the feature space is much higher than the number of training samples. However, little attention has been paid to such a problem. This paper first adopts an in-depth investigation to the USP in PCR, which answers three questions: 1) Why is USP produced? 2) What is the condition for USP, and 3) How is the influence of USP on regression. With the help of the above analysis, the principal components selection problem of PCR is presented. Subsequently, to address the problem of PCR, a multivariate multilinear regression (MMR) model is proposed which gives a substitutive solution to MLR, under the condition of multilinear objects. The basic idea of MMR is to transfer the multilinear structure of objects into the regression coefficients as a constraint. As a result, the regression problem is reduced to find two low-dimensional coefficients so that the principal components selection problem is avoided. Moreover, the sample size needed for solving MMR is greatly reduced so that USP is alleviated. As there is no closed-form solution for MMR, an alternative projection procedure is designed to obtain the regression matrices. For the sake of completeness, the analysis of computational cost and the proof of convergence are studied subsequently. Furthermore, MMR is applied to model the fitting procedure in the active appearance model (AAM). Experiments are conducted on both the carefully designed synthesizing data set and AAM fitting databases verified the theoretical analysis.</p>","PeriodicalId":55006,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TSMCB.2012.2195171","citationCount":"44","resultStr":"{\"title\":\"Multivariate multilinear regression.\",\"authors\":\"Ya Su,&nbsp;Xinbo Gao,&nbsp;Xuelong Li,&nbsp;Dacheng Tao\",\"doi\":\"10.1109/TSMCB.2012.2195171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Conventional regression methods, such as multivariate linear regression (MLR) and its extension principal component regression (PCR), deal well with the situations that the data are of the form of low-dimensional vector. When the dimension grows higher, it leads to the under sample problem (USP): the dimensionality of the feature space is much higher than the number of training samples. However, little attention has been paid to such a problem. This paper first adopts an in-depth investigation to the USP in PCR, which answers three questions: 1) Why is USP produced? 2) What is the condition for USP, and 3) How is the influence of USP on regression. With the help of the above analysis, the principal components selection problem of PCR is presented. Subsequently, to address the problem of PCR, a multivariate multilinear regression (MMR) model is proposed which gives a substitutive solution to MLR, under the condition of multilinear objects. The basic idea of MMR is to transfer the multilinear structure of objects into the regression coefficients as a constraint. As a result, the regression problem is reduced to find two low-dimensional coefficients so that the principal components selection problem is avoided. Moreover, the sample size needed for solving MMR is greatly reduced so that USP is alleviated. As there is no closed-form solution for MMR, an alternative projection procedure is designed to obtain the regression matrices. For the sake of completeness, the analysis of computational cost and the proof of convergence are studied subsequently. Furthermore, MMR is applied to model the fitting procedure in the active appearance model (AAM). Experiments are conducted on both the carefully designed synthesizing data set and AAM fitting databases verified the theoretical analysis.</p>\",\"PeriodicalId\":55006,\"journal\":{\"name\":\"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TSMCB.2012.2195171\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSMCB.2012.2195171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/5/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSMCB.2012.2195171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/5/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

摘要

传统的回归方法,如多元线性回归(MLR)及其扩展主成分回归(PCR),可以很好地处理数据为低维向量形式的情况。当维数越高,就会导致样本下问题(USP):特征空间的维数远远高于训练样本的数量。然而,很少有人注意到这一问题。本文首先对PCR中的USP进行了深入的研究,回答了三个问题:1)为什么要制作USP ?2) USP的条件是什么? 3)USP对回归的影响如何?在此基础上,提出了PCR的主成分选择问题。随后,为了解决PCR问题,提出了一个多元多元线性回归(MMR)模型,该模型在多线性对象条件下给出了MLR的替代解。MMR的基本思想是将物体的多线性结构作为约束转化为回归系数。将回归问题简化为寻找两个低维系数,从而避免了主成分选择问题。此外,求解MMR所需的样本量也大大减少,从而减轻了USP。由于MMR没有闭合解,因此设计了一种替代投影程序来获得回归矩阵。为了保证算法的完整性,本文还对算法的计算代价分析和收敛性证明进行了研究。在此基础上,利用MMR对主动外观模型(AAM)的拟合过程进行建模。在精心设计的综合数据集和AAM拟合数据库上进行了实验,验证了理论分析的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multivariate multilinear regression.

Conventional regression methods, such as multivariate linear regression (MLR) and its extension principal component regression (PCR), deal well with the situations that the data are of the form of low-dimensional vector. When the dimension grows higher, it leads to the under sample problem (USP): the dimensionality of the feature space is much higher than the number of training samples. However, little attention has been paid to such a problem. This paper first adopts an in-depth investigation to the USP in PCR, which answers three questions: 1) Why is USP produced? 2) What is the condition for USP, and 3) How is the influence of USP on regression. With the help of the above analysis, the principal components selection problem of PCR is presented. Subsequently, to address the problem of PCR, a multivariate multilinear regression (MMR) model is proposed which gives a substitutive solution to MLR, under the condition of multilinear objects. The basic idea of MMR is to transfer the multilinear structure of objects into the regression coefficients as a constraint. As a result, the regression problem is reduced to find two low-dimensional coefficients so that the principal components selection problem is avoided. Moreover, the sample size needed for solving MMR is greatly reduced so that USP is alleviated. As there is no closed-form solution for MMR, an alternative projection procedure is designed to obtain the regression matrices. For the sake of completeness, the analysis of computational cost and the proof of convergence are studied subsequently. Furthermore, MMR is applied to model the fitting procedure in the active appearance model (AAM). Experiments are conducted on both the carefully designed synthesizing data set and AAM fitting databases verified the theoretical analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
6.0 months
期刊最新文献
Alternative Tests for the Selection of Model Variables Operations Research Reverse control for humanoid robot task recognition. Robust adaptive control of MEMS triaxial gyroscope using fuzzy compensator. An effective feature selection method via mutual information estimation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1