Yann G J Sterckx, Abel Garcia-Pino, Sarah Haesaerts, Thomas Jové, Lieselotte Geerts, Viktor Sakellaris, Laurence Van Melderen, Remy Loris
{"title":"来自大肠杆菌O157的ParE2-PaaA2毒素-抗毒素复合物在溶液和晶体中形成异docecamer。","authors":"Yann G J Sterckx, Abel Garcia-Pino, Sarah Haesaerts, Thomas Jové, Lieselotte Geerts, Viktor Sakellaris, Laurence Van Melderen, Remy Loris","doi":"10.1107/S1744309112015230","DOIUrl":null,"url":null,"abstract":"<p><p>Escherichia coli O157 paaR2-paaA2-parE2 constitutes a unique three-component toxin-antitoxin (TA) module encoding a toxin (ParE2) related to the classic parDE family but with an unrelated antitoxin called PaaA2. The complex between PaaA2 and ParE2 was purified and characterized by analytical gel filtration, dynamic light scattering and small-angle X-ray scattering. It consists of a particle with a radius of gyration of 3.95 nm and is likely to form a heterododecamer. Crystals of the ParE2-PaaA2 complex diffract to 3.8 Å resolution and belong to space group P3(1)21 or P3(2)21, with unit-cell parameters a = b = 142.9, c = 87.5 Å. The asymmetric unit is consistent with a particle of around 125 kDa, which is compatible with the solution data. Therefore, the ParE2-PaaA2 complex is the largest toxin-antitoxin complex identified to date and its quaternary arrangement is likely to be of biological significance.</p>","PeriodicalId":7310,"journal":{"name":"Acta Crystallographica Section F-structural Biology and Crystallization Communications","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2012-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1107/S1744309112015230","citationCount":"7","resultStr":"{\"title\":\"The ParE2-PaaA2 toxin-antitoxin complex from Escherichia coli O157 forms a heterodocecamer in solution and in the crystal.\",\"authors\":\"Yann G J Sterckx, Abel Garcia-Pino, Sarah Haesaerts, Thomas Jové, Lieselotte Geerts, Viktor Sakellaris, Laurence Van Melderen, Remy Loris\",\"doi\":\"10.1107/S1744309112015230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Escherichia coli O157 paaR2-paaA2-parE2 constitutes a unique three-component toxin-antitoxin (TA) module encoding a toxin (ParE2) related to the classic parDE family but with an unrelated antitoxin called PaaA2. The complex between PaaA2 and ParE2 was purified and characterized by analytical gel filtration, dynamic light scattering and small-angle X-ray scattering. It consists of a particle with a radius of gyration of 3.95 nm and is likely to form a heterododecamer. Crystals of the ParE2-PaaA2 complex diffract to 3.8 Å resolution and belong to space group P3(1)21 or P3(2)21, with unit-cell parameters a = b = 142.9, c = 87.5 Å. The asymmetric unit is consistent with a particle of around 125 kDa, which is compatible with the solution data. Therefore, the ParE2-PaaA2 complex is the largest toxin-antitoxin complex identified to date and its quaternary arrangement is likely to be of biological significance.</p>\",\"PeriodicalId\":7310,\"journal\":{\"name\":\"Acta Crystallographica Section F-structural Biology and Crystallization Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2012-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1107/S1744309112015230\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica Section F-structural Biology and Crystallization Communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1107/S1744309112015230\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/5/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section F-structural Biology and Crystallization Communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S1744309112015230","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/5/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
The ParE2-PaaA2 toxin-antitoxin complex from Escherichia coli O157 forms a heterodocecamer in solution and in the crystal.
Escherichia coli O157 paaR2-paaA2-parE2 constitutes a unique three-component toxin-antitoxin (TA) module encoding a toxin (ParE2) related to the classic parDE family but with an unrelated antitoxin called PaaA2. The complex between PaaA2 and ParE2 was purified and characterized by analytical gel filtration, dynamic light scattering and small-angle X-ray scattering. It consists of a particle with a radius of gyration of 3.95 nm and is likely to form a heterododecamer. Crystals of the ParE2-PaaA2 complex diffract to 3.8 Å resolution and belong to space group P3(1)21 or P3(2)21, with unit-cell parameters a = b = 142.9, c = 87.5 Å. The asymmetric unit is consistent with a particle of around 125 kDa, which is compatible with the solution data. Therefore, the ParE2-PaaA2 complex is the largest toxin-antitoxin complex identified to date and its quaternary arrangement is likely to be of biological significance.
期刊介绍:
Acta Crystallographica Section F is a rapid structural biology communications journal.
Articles on any aspect of structural biology, including structures determined using high-throughput methods or from iterative studies such as those used in the pharmaceutical industry, are welcomed by the journal.
The journal offers the option of open access, and all communications benefit from unlimited free use of colour illustrations and no page charges. Authors are encouraged to submit multimedia content for publication with their articles.
Acta Cryst. F has a dedicated online tool called publBio that is designed to make the preparation and submission of articles easier for authors.