海藻类Cymopolia barbata的细胞毒性和有效的CYP1抑制剂。

Simone Badal, Winklet Gallimore, George Huang, Tzuen-Rong Jeremy Tzeng, Rupika Delgoda
{"title":"海藻类Cymopolia barbata的细胞毒性和有效的CYP1抑制剂。","authors":"Simone Badal,&nbsp;Winklet Gallimore,&nbsp;George Huang,&nbsp;Tzuen-Rong Jeremy Tzeng,&nbsp;Rupika Delgoda","doi":"10.1186/2191-2858-2-21","DOIUrl":null,"url":null,"abstract":"<p><strong>Unlabelled: </strong></p><p><strong>Background: </strong>Extracts from the marine algae Cymopolia barbata have previously shown promising pharmacological activity including antifungal, antitumor, antimicrobial, and antimutagenic properties. Even though extracts have demonstrated such bioactivity, isolated ingredients responsible for such bioactivity remain unspecified. In this study, we describe chemical characterization and evaluations of biological activity of prenylated bromohydroquinones (PBQ) isolated from the marine algae C. barbata for their cytotoxic and chemopreventive potential.</p><p><strong>Methods: </strong>The impact of PBQs on the viability of cell lines (MCF-7, HT29, HepG, and CCD18 Co) was evaluated using the MTS assay. In addition, their inhibitory impact on the activities of heterologously expressed cytochrome P450 (CYP) enzymes (CYP1A1, CYP1A2, CYP1B1, CYP2C19, CYP2D6, and CYP3A4) was evaluated using a fluorescent assay.</p><p><strong>Results: </strong>7-Hydroxycymopochromanone (PBQ1) and 7-hydroxycymopolone (PBQ2) were isolated using liquid and column chromatography, identified using 1 H and 13 C NMR spectra and compared with the spectra of previously isolated PBQs. PBQ2 selectively impacted the viability of HT29, colon cancer cells with similar potency to the known chemotherapeutic drug, fluorouracil (IC50, 19.82 ± 0.46 μM compared to 23.50 ± 1.12 μM, respectively) with impact toward normal colon cells also being comparable (55.65 ± 3.28 compared to 55.51 ± 3.71 μM, respectively), while PBQ1 had no impact on these cells. Both PBQs had potent inhibition against the activities of CYP1A1 and CYP1B1, the latter which is known to be a universal marker for cancer and a target for drug discovery. Inhibitors of CYP1 enzymes by virtue of the prevention of activation of carcinogens such as benzo-a-pyrene have drawn attention as potential chemopreventors. PBQ2 potently inhibited the activity of CYP1B1 (IC50 0.14 ± 0.04 μM), while both PBQ1 and PBQ2 potently inhibited the activity of CYP1A1 (IC50s of 0.39 ± 0.05 μM and 0.93 ± 0.26 μM, respectively). Further characterizations showed partial noncompetitive enzyme kinetics for PBQ2 with CYP1B1 with a Ki of 4.7 × 10-3 ± 5.1 × 10-4 μM and uncompetitive kinetics with CYP1A1 (Ki = 0.84 ± 0.07 μM); while PBQ1 displayed partial non competitive enzyme kinetics with CYP1A1 (Ki of 3.07 ± 0.69 μM), noncompetitive kinetics with CYP1A2 (Ki = 9.16 ± 4.68 μM) and uncompetitive kinetics with CYP1B1 (Ki = 0.26 ± 0.03 μM) .</p><p><strong>Conclusions: </strong>We report for the first time, two isolated ingredients from C. barbata, PBQ1 and PBQ2, that show potential as valuable chemotherapeutic compounds. A hydroxyl moiety resident in PBQ2 appears to be critical for selectivity and potency against the cancer colon cells, HT29, in comparison to the three other malignant cell lines studied. PBQs also show potency against the activities of CYP1 enzyme which may be a lead in chemoprevention. This study, the first on isolates from these marine algae, exemplifies the value of searching within nature for unique structural motifs that can display multiple biological activities.</p>","PeriodicalId":19639,"journal":{"name":"Organic and Medicinal Chemistry Letters","volume":"2 1","pages":"21"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2191-2858-2-21","citationCount":"25","resultStr":"{\"title\":\"Cytotoxic and potent CYP1 inhibitors from the marine algae Cymopolia barbata.\",\"authors\":\"Simone Badal,&nbsp;Winklet Gallimore,&nbsp;George Huang,&nbsp;Tzuen-Rong Jeremy Tzeng,&nbsp;Rupika Delgoda\",\"doi\":\"10.1186/2191-2858-2-21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Unlabelled: </strong></p><p><strong>Background: </strong>Extracts from the marine algae Cymopolia barbata have previously shown promising pharmacological activity including antifungal, antitumor, antimicrobial, and antimutagenic properties. Even though extracts have demonstrated such bioactivity, isolated ingredients responsible for such bioactivity remain unspecified. In this study, we describe chemical characterization and evaluations of biological activity of prenylated bromohydroquinones (PBQ) isolated from the marine algae C. barbata for their cytotoxic and chemopreventive potential.</p><p><strong>Methods: </strong>The impact of PBQs on the viability of cell lines (MCF-7, HT29, HepG, and CCD18 Co) was evaluated using the MTS assay. In addition, their inhibitory impact on the activities of heterologously expressed cytochrome P450 (CYP) enzymes (CYP1A1, CYP1A2, CYP1B1, CYP2C19, CYP2D6, and CYP3A4) was evaluated using a fluorescent assay.</p><p><strong>Results: </strong>7-Hydroxycymopochromanone (PBQ1) and 7-hydroxycymopolone (PBQ2) were isolated using liquid and column chromatography, identified using 1 H and 13 C NMR spectra and compared with the spectra of previously isolated PBQs. PBQ2 selectively impacted the viability of HT29, colon cancer cells with similar potency to the known chemotherapeutic drug, fluorouracil (IC50, 19.82 ± 0.46 μM compared to 23.50 ± 1.12 μM, respectively) with impact toward normal colon cells also being comparable (55.65 ± 3.28 compared to 55.51 ± 3.71 μM, respectively), while PBQ1 had no impact on these cells. Both PBQs had potent inhibition against the activities of CYP1A1 and CYP1B1, the latter which is known to be a universal marker for cancer and a target for drug discovery. Inhibitors of CYP1 enzymes by virtue of the prevention of activation of carcinogens such as benzo-a-pyrene have drawn attention as potential chemopreventors. PBQ2 potently inhibited the activity of CYP1B1 (IC50 0.14 ± 0.04 μM), while both PBQ1 and PBQ2 potently inhibited the activity of CYP1A1 (IC50s of 0.39 ± 0.05 μM and 0.93 ± 0.26 μM, respectively). Further characterizations showed partial noncompetitive enzyme kinetics for PBQ2 with CYP1B1 with a Ki of 4.7 × 10-3 ± 5.1 × 10-4 μM and uncompetitive kinetics with CYP1A1 (Ki = 0.84 ± 0.07 μM); while PBQ1 displayed partial non competitive enzyme kinetics with CYP1A1 (Ki of 3.07 ± 0.69 μM), noncompetitive kinetics with CYP1A2 (Ki = 9.16 ± 4.68 μM) and uncompetitive kinetics with CYP1B1 (Ki = 0.26 ± 0.03 μM) .</p><p><strong>Conclusions: </strong>We report for the first time, two isolated ingredients from C. barbata, PBQ1 and PBQ2, that show potential as valuable chemotherapeutic compounds. A hydroxyl moiety resident in PBQ2 appears to be critical for selectivity and potency against the cancer colon cells, HT29, in comparison to the three other malignant cell lines studied. PBQs also show potency against the activities of CYP1 enzyme which may be a lead in chemoprevention. This study, the first on isolates from these marine algae, exemplifies the value of searching within nature for unique structural motifs that can display multiple biological activities.</p>\",\"PeriodicalId\":19639,\"journal\":{\"name\":\"Organic and Medicinal Chemistry Letters\",\"volume\":\"2 1\",\"pages\":\"21\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/2191-2858-2-21\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic and Medicinal Chemistry Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/2191-2858-2-21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic and Medicinal Chemistry Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/2191-2858-2-21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

背景:从海藻类Cymopolia barbata中提取的提取物先前显示出有希望的药理活性,包括抗真菌,抗肿瘤,抗菌和抗诱变特性。尽管提取物已经显示出这样的生物活性,但负责这种生物活性的分离成分仍未明确。在这项研究中,我们描述了从海藻c.b barbata中分离的苯丙基溴对苯二酚(PBQ)的化学特性和生物活性评价,因为它们具有细胞毒性和化学预防潜力。方法:采用MTS法评价pbq对MCF-7、HT29、HepG和CCD18 Co细胞系活力的影响。此外,利用荧光法评估了它们对异源表达的细胞色素P450 (CYP)酶(CYP1A1、CYP1A2、CYP1B1、CYP2C19、CYP2D6和CYP3A4)活性的抑制作用。结果:7-羟基cymopochromanone (PBQ1)和7-Hydroxycymopochromanone (PBQ2)采用液相色谱和柱层析分离得到,1h和13c NMR谱进行了鉴定,并与先前分离的pbq进行了比较。PBQ2选择性地影响HT29结肠癌细胞的活力,其效价与已知化疗药物氟尿嘧啶相似(IC50分别为19.82±0.46 μM和23.50±1.12 μM),对正常结肠细胞的影响也相当(分别为55.65±3.28 μM和55.51±3.71 μM),而PBQ1对这些细胞没有影响。这两种pbq对CYP1A1和CYP1B1的活性都有有效的抑制作用,后者是已知的癌症的普遍标记物和药物发现的靶标。CYP1酶的抑制剂通过防止致癌物质如苯并-a-芘的激活而受到关注,作为潜在的化学预防剂。PBQ2显著抑制CYP1B1的活性(IC50为0.14±0.04 μM),而PBQ1和PBQ2均显著抑制CYP1A1的活性(IC50分别为0.39±0.05 μM和0.93±0.26 μM)。进一步表征表明,PBQ2与CYP1B1的部分非竞争性酶动力学Ki = 4.7 × 10-3±5.1 × 10-4 μM,与CYP1A1的非竞争性酶动力学Ki = 0.84±0.07 μM;PBQ1与CYP1A1 (Ki = 3.07±0.69 μM)、CYP1A2 (Ki = 9.16±4.68 μM)和CYP1B1 (Ki = 0.26±0.03 μM)表现出部分非竞争性酶动力学。结论:首次报道了从芭芭拉中分离到的PBQ1和PBQ2两种具有潜在化疗价值的化合物。与所研究的其他三种恶性细胞系相比,PBQ2中的羟基片段似乎对结肠癌细胞HT29的选择性和效力至关重要。pbq还显示出对CYP1酶活性的抑制作用,这可能是化学预防的一个线索。这项研究首次从这些海藻中分离出来,证明了在自然界中寻找能够显示多种生物活性的独特结构基序的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cytotoxic and potent CYP1 inhibitors from the marine algae Cymopolia barbata.

Unlabelled:

Background: Extracts from the marine algae Cymopolia barbata have previously shown promising pharmacological activity including antifungal, antitumor, antimicrobial, and antimutagenic properties. Even though extracts have demonstrated such bioactivity, isolated ingredients responsible for such bioactivity remain unspecified. In this study, we describe chemical characterization and evaluations of biological activity of prenylated bromohydroquinones (PBQ) isolated from the marine algae C. barbata for their cytotoxic and chemopreventive potential.

Methods: The impact of PBQs on the viability of cell lines (MCF-7, HT29, HepG, and CCD18 Co) was evaluated using the MTS assay. In addition, their inhibitory impact on the activities of heterologously expressed cytochrome P450 (CYP) enzymes (CYP1A1, CYP1A2, CYP1B1, CYP2C19, CYP2D6, and CYP3A4) was evaluated using a fluorescent assay.

Results: 7-Hydroxycymopochromanone (PBQ1) and 7-hydroxycymopolone (PBQ2) were isolated using liquid and column chromatography, identified using 1 H and 13 C NMR spectra and compared with the spectra of previously isolated PBQs. PBQ2 selectively impacted the viability of HT29, colon cancer cells with similar potency to the known chemotherapeutic drug, fluorouracil (IC50, 19.82 ± 0.46 μM compared to 23.50 ± 1.12 μM, respectively) with impact toward normal colon cells also being comparable (55.65 ± 3.28 compared to 55.51 ± 3.71 μM, respectively), while PBQ1 had no impact on these cells. Both PBQs had potent inhibition against the activities of CYP1A1 and CYP1B1, the latter which is known to be a universal marker for cancer and a target for drug discovery. Inhibitors of CYP1 enzymes by virtue of the prevention of activation of carcinogens such as benzo-a-pyrene have drawn attention as potential chemopreventors. PBQ2 potently inhibited the activity of CYP1B1 (IC50 0.14 ± 0.04 μM), while both PBQ1 and PBQ2 potently inhibited the activity of CYP1A1 (IC50s of 0.39 ± 0.05 μM and 0.93 ± 0.26 μM, respectively). Further characterizations showed partial noncompetitive enzyme kinetics for PBQ2 with CYP1B1 with a Ki of 4.7 × 10-3 ± 5.1 × 10-4 μM and uncompetitive kinetics with CYP1A1 (Ki = 0.84 ± 0.07 μM); while PBQ1 displayed partial non competitive enzyme kinetics with CYP1A1 (Ki of 3.07 ± 0.69 μM), noncompetitive kinetics with CYP1A2 (Ki = 9.16 ± 4.68 μM) and uncompetitive kinetics with CYP1B1 (Ki = 0.26 ± 0.03 μM) .

Conclusions: We report for the first time, two isolated ingredients from C. barbata, PBQ1 and PBQ2, that show potential as valuable chemotherapeutic compounds. A hydroxyl moiety resident in PBQ2 appears to be critical for selectivity and potency against the cancer colon cells, HT29, in comparison to the three other malignant cell lines studied. PBQs also show potency against the activities of CYP1 enzyme which may be a lead in chemoprevention. This study, the first on isolates from these marine algae, exemplifies the value of searching within nature for unique structural motifs that can display multiple biological activities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sunlight-induced rapid and efficient biogenic synthesis of silver nanoparticles using aqueous leaf extract of Ocimum sanctum Linn. with enhanced antibacterial activity. An efficient heterogeneous catalyst (CuO@ARF) for on-water C-S coupling reaction: an application to the synthesis of phenothiazine structural scaffold Synthesis of 2-cyclopropyl-3-(5-aryl-1H-pyrazol-3-yl)-1,8-naphthyridine Method development and validation of potent pyrimidine derivative by UV-VIS spectrophotometer Synthesis and biological evaluation of benzimidazole-linked 1,2,3-triazole congeners as agents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1