定义数据集和创建数据字典,用于使用常规收集的数据进行慢性病质量改进和研究:本体驱动的方法。

Simon de Lusignan, Siaw-Teng Liaw, Georgios Michalakidis, Simon Jones
{"title":"定义数据集和创建数据字典,用于使用常规收集的数据进行慢性病质量改进和研究:本体驱动的方法。","authors":"Simon de Lusignan,&nbsp;Siaw-Teng Liaw,&nbsp;Georgios Michalakidis,&nbsp;Simon Jones","doi":"10.14236/jhi.v19i3.805","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The burden of chronic disease is increasing, and research and quality improvement will be less effective if case finding strategies are suboptimal.</p><p><strong>Objective: </strong>To describe an ontology-driven approach to case finding in chronic disease and how this approach can be used to create a data dictionary and make the codes used in case finding transparent.</p><p><strong>Method: </strong>A five-step process: (1) identifying a reference coding system or terminology; (2) using an ontology-driven approach to identify cases; (3) developing metadata that can be used to identify the extracted data; (4) mapping the extracted data to the reference terminology; and (5) creating the data dictionary.</p><p><strong>Results: </strong>Hypertension is presented as an exemplar. A patient with hypertension can be represented by a range of codes including diagnostic, history and administrative. Metadata can link the coding system and data extraction queries to the correct data mapping and translation tool, which then maps it to the equivalent code in the reference terminology. The code extracted, the term, its domain and subdomain, and the name of the data extraction query can then be automatically grouped and published online as a readily searchable data dictionary. An exemplar online is: www.clininf.eu/qickd-data-dictionary.html</p><p><strong>Conclusion: </strong>Adopting an ontology-driven approach to case finding could improve the quality of disease registers and of research based on routine data. It would offer considerable advantages over using limited datasets to define cases. This approach should be considered by those involved in research and quality improvement projects which utilise routine data.</p>","PeriodicalId":30591,"journal":{"name":"Informatics in Primary Care","volume":"19 3","pages":"127-34"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Defining datasets and creating data dictionaries for quality improvement and research in chronic disease using routinely collected data: an ontology-driven approach.\",\"authors\":\"Simon de Lusignan,&nbsp;Siaw-Teng Liaw,&nbsp;Georgios Michalakidis,&nbsp;Simon Jones\",\"doi\":\"10.14236/jhi.v19i3.805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The burden of chronic disease is increasing, and research and quality improvement will be less effective if case finding strategies are suboptimal.</p><p><strong>Objective: </strong>To describe an ontology-driven approach to case finding in chronic disease and how this approach can be used to create a data dictionary and make the codes used in case finding transparent.</p><p><strong>Method: </strong>A five-step process: (1) identifying a reference coding system or terminology; (2) using an ontology-driven approach to identify cases; (3) developing metadata that can be used to identify the extracted data; (4) mapping the extracted data to the reference terminology; and (5) creating the data dictionary.</p><p><strong>Results: </strong>Hypertension is presented as an exemplar. A patient with hypertension can be represented by a range of codes including diagnostic, history and administrative. Metadata can link the coding system and data extraction queries to the correct data mapping and translation tool, which then maps it to the equivalent code in the reference terminology. The code extracted, the term, its domain and subdomain, and the name of the data extraction query can then be automatically grouped and published online as a readily searchable data dictionary. An exemplar online is: www.clininf.eu/qickd-data-dictionary.html</p><p><strong>Conclusion: </strong>Adopting an ontology-driven approach to case finding could improve the quality of disease registers and of research based on routine data. It would offer considerable advantages over using limited datasets to define cases. This approach should be considered by those involved in research and quality improvement projects which utilise routine data.</p>\",\"PeriodicalId\":30591,\"journal\":{\"name\":\"Informatics in Primary Care\",\"volume\":\"19 3\",\"pages\":\"127-34\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatics in Primary Care\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14236/jhi.v19i3.805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics in Primary Care","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14236/jhi.v19i3.805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

背景:慢性疾病的负担正在增加,如果病例发现策略不够理想,研究和质量改进将不太有效。目的:描述慢性病病例查找的本体驱动方法,以及如何使用该方法创建数据字典并使病例查找中使用的代码透明。方法:一个五步过程:(1)确定一个参考编码系统或术语;(2)使用本体驱动的方法来识别案例;(3)开发可用于识别提取数据的元数据;(4)将提取的数据映射到参考术语;(5)创建数据字典。结果:以高血压为例。高血压患者可以用一系列代码来表示,包括诊断、病史和行政管理。元数据可以将编码系统和数据提取查询链接到正确的数据映射和翻译工具,然后将其映射到参考术语中的等效代码。然后,提取的代码、术语、其域和子域以及数据提取查询的名称可以自动分组并作为易于搜索的数据字典在线发布。网上的一个范例是:www.clininf.eu/qickd-data-dictionary.htmlConclusion:采用本体驱动的方法查找病例可以提高疾病登记和基于常规数据的研究的质量。与使用有限的数据集来定义案例相比,它将提供相当大的优势。参与利用常规数据的研究和质量改进项目的人员应考虑这种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Defining datasets and creating data dictionaries for quality improvement and research in chronic disease using routinely collected data: an ontology-driven approach.

Background: The burden of chronic disease is increasing, and research and quality improvement will be less effective if case finding strategies are suboptimal.

Objective: To describe an ontology-driven approach to case finding in chronic disease and how this approach can be used to create a data dictionary and make the codes used in case finding transparent.

Method: A five-step process: (1) identifying a reference coding system or terminology; (2) using an ontology-driven approach to identify cases; (3) developing metadata that can be used to identify the extracted data; (4) mapping the extracted data to the reference terminology; and (5) creating the data dictionary.

Results: Hypertension is presented as an exemplar. A patient with hypertension can be represented by a range of codes including diagnostic, history and administrative. Metadata can link the coding system and data extraction queries to the correct data mapping and translation tool, which then maps it to the equivalent code in the reference terminology. The code extracted, the term, its domain and subdomain, and the name of the data extraction query can then be automatically grouped and published online as a readily searchable data dictionary. An exemplar online is: www.clininf.eu/qickd-data-dictionary.html

Conclusion: Adopting an ontology-driven approach to case finding could improve the quality of disease registers and of research based on routine data. It would offer considerable advantages over using limited datasets to define cases. This approach should be considered by those involved in research and quality improvement projects which utilise routine data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
14 weeks
期刊最新文献
Exploring an informed decision-making framework using in-home sensors: older adults' perceptions. Undertaking sociotechnical evaluations of health information technologies. Privacy protection for personal health information and shared care records. Coding errors in an analysis of the impact of pay-for-performance on the care for long-term cardiovascular disease: a case study. Effective pseudonymisation and explicit statements of public interest to ensure the benefits of sharing health data for research, quality improvement and health service management outweigh the risks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1