{"title":"视觉通路选择在亮度感应中的可能作用及基础。","authors":"Kuntal Ghosh","doi":"10.1163/187847612X629946","DOIUrl":null,"url":null,"abstract":"<p><p>It is a well-known fact that the perceived brightness of any surface depends on the brightness of the surfaces that surround it. This phenomenon is termed as brightness induction. Isotropic arrays of multi-scale DoG (Difference of Gaussians) as well as cortical Oriented DoG (ODOG) and extensions thereof, like the Frequency-specific Locally Normalized ODOG (FLODOG) functions have been employed towards prediction of the direction of brightness induction in many brightness perception effects. But the neural basis of such spatial filters is seldom obvious. For instance, the visual information from retinal ganglion cells to such spatial filters, which have been generally speculated to appear at the early stage of cortical processing, are fed by at least three parallel channels viz. Parvocellular (P), Magnocellular (M) and Koniocellular (K) in the subcortical pathway, but the role of such pathways in brightness induction is generally not implicit. In this work, three different spatial filters based on an extended classical receptive field (ECRF) model of retinal ganglion cells, have been approximately related to the spatial contrast sensitivity functions of these three parallel channels. Based on our analysis involving different brightness perception effects, we propose that the M channel, with maximum conduction velocity, may have a special role for an initial sensorial perception. As a result, brightness assimilation may be the consequence of vision at a glance through the M pathway; contrast effect may be the consequence of a subsequent vision with scrutiny through the P channel; and the K pathway response may represent an intermediate situation resulting in ambiguity in brightness perception. The present work attempts to correlate this phenomenon of pathway selection with the complementary nature of these channels in terms of spatial frequency as well as contrast.</p>","PeriodicalId":49553,"journal":{"name":"Seeing and Perceiving","volume":"25 2","pages":"179-212"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1163/187847612X629946","citationCount":"8","resultStr":"{\"title\":\"A possible role and basis of visual pathway selection in brightness induction.\",\"authors\":\"Kuntal Ghosh\",\"doi\":\"10.1163/187847612X629946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is a well-known fact that the perceived brightness of any surface depends on the brightness of the surfaces that surround it. This phenomenon is termed as brightness induction. Isotropic arrays of multi-scale DoG (Difference of Gaussians) as well as cortical Oriented DoG (ODOG) and extensions thereof, like the Frequency-specific Locally Normalized ODOG (FLODOG) functions have been employed towards prediction of the direction of brightness induction in many brightness perception effects. But the neural basis of such spatial filters is seldom obvious. For instance, the visual information from retinal ganglion cells to such spatial filters, which have been generally speculated to appear at the early stage of cortical processing, are fed by at least three parallel channels viz. Parvocellular (P), Magnocellular (M) and Koniocellular (K) in the subcortical pathway, but the role of such pathways in brightness induction is generally not implicit. In this work, three different spatial filters based on an extended classical receptive field (ECRF) model of retinal ganglion cells, have been approximately related to the spatial contrast sensitivity functions of these three parallel channels. Based on our analysis involving different brightness perception effects, we propose that the M channel, with maximum conduction velocity, may have a special role for an initial sensorial perception. As a result, brightness assimilation may be the consequence of vision at a glance through the M pathway; contrast effect may be the consequence of a subsequent vision with scrutiny through the P channel; and the K pathway response may represent an intermediate situation resulting in ambiguity in brightness perception. The present work attempts to correlate this phenomenon of pathway selection with the complementary nature of these channels in terms of spatial frequency as well as contrast.</p>\",\"PeriodicalId\":49553,\"journal\":{\"name\":\"Seeing and Perceiving\",\"volume\":\"25 2\",\"pages\":\"179-212\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1163/187847612X629946\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seeing and Perceiving\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1163/187847612X629946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seeing and Perceiving","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1163/187847612X629946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A possible role and basis of visual pathway selection in brightness induction.
It is a well-known fact that the perceived brightness of any surface depends on the brightness of the surfaces that surround it. This phenomenon is termed as brightness induction. Isotropic arrays of multi-scale DoG (Difference of Gaussians) as well as cortical Oriented DoG (ODOG) and extensions thereof, like the Frequency-specific Locally Normalized ODOG (FLODOG) functions have been employed towards prediction of the direction of brightness induction in many brightness perception effects. But the neural basis of such spatial filters is seldom obvious. For instance, the visual information from retinal ganglion cells to such spatial filters, which have been generally speculated to appear at the early stage of cortical processing, are fed by at least three parallel channels viz. Parvocellular (P), Magnocellular (M) and Koniocellular (K) in the subcortical pathway, but the role of such pathways in brightness induction is generally not implicit. In this work, three different spatial filters based on an extended classical receptive field (ECRF) model of retinal ganglion cells, have been approximately related to the spatial contrast sensitivity functions of these three parallel channels. Based on our analysis involving different brightness perception effects, we propose that the M channel, with maximum conduction velocity, may have a special role for an initial sensorial perception. As a result, brightness assimilation may be the consequence of vision at a glance through the M pathway; contrast effect may be the consequence of a subsequent vision with scrutiny through the P channel; and the K pathway response may represent an intermediate situation resulting in ambiguity in brightness perception. The present work attempts to correlate this phenomenon of pathway selection with the complementary nature of these channels in terms of spatial frequency as well as contrast.