将纳米技术从实验室转化为制药市场:障碍、成功和承诺。

Journal of drug delivery Pub Date : 2012-01-01 Epub Date: 2012-05-30 DOI:10.1155/2012/678910
Abhijit A Date, Rajesh R Patil, Riccardo Panicucci, Eliana B Souto, Robert W Lee
{"title":"将纳米技术从实验室转化为制药市场:障碍、成功和承诺。","authors":"Abhijit A Date, Rajesh R Patil, Riccardo Panicucci, Eliana B Souto, Robert W Lee","doi":"10.1155/2012/678910","DOIUrl":null,"url":null,"abstract":"Nanotechnology is a buzzword of this millennium and it has transformed the face of research in science and technology. The advent of nanotechnology has also influenced the biomedical and pharmaceutical research since last decade. Various nano-architectures have been designed for improving the therapeutic performance of drugs, proteins, peptides, and genes and to achieve their targeting at the site of action. Although nanotechnology has demonstrated dramatic potential in drug delivery research, like any technology, its real success depends on the ability of drug delivery scientists to translate and scale innovations to the commercial pharmaceutical products. It is indeed a very challenging task to successfully overcome manufacturing, clinical, and regulatory hurdles associated with a nanotech product. Nevertheless, the pharmaceutical industry has witnessed commercialization of the nanotechnology-based products for various applications. In the present special issue, we have tried to consolidate various aspects of existing and upcoming nanotechnologies for drug delivery. \n \nContribution by V. Morigi et al. takes an overview of business potential and market trend of pharmaceutical nanotechnology. The authors have also discussed financial aspects of nanotechnology by citing noteworthy examples of few nanotech products that have already been commercialized. This contribution could be useful to scientists aiming to start up nanotechnological business ventures. Contribution by N. Anton et al. demonstrates how nanotechnology can change the face of conventional drug delivery systems. In this interesting investigation, the authors demonstrate that coating of conventional tablets with lipid nanoemulsion can be used to modulate the release of the drug from tablet matrix. The paper by P. Severino et al. gives an account of potential of solid lipid nanocarriers for the oral delivery of drugs and peptides. The authors have provided information about the lipids that can be used for oral delivery, role of lipids in the oral delivery, toxicological aspects of lipid nanocarriers, and products under clinical development. \n \nS. Banerjee et al. have given a complete overview of polyethylene-glycol- (PEG-) based conjugates for drug delivery. The contribution fosters understanding design aspects of and chemistry behind PEG-based nano-architectures for drug delivery. Furthermore, the paper has a detailed discussion on the various PEG-conjugates available in the pharmaceutical market. Contribution by A. Garcia et al. highlights the potential of particle replication in nonwetting templates (PRINT), a platform technology based on lithographic techniques for drug delivery applications. The contribution clearly demonstrates potential of PRINT technology to generate particles of various, but precise, morphology for a variety of drugs and biotechnology-based therapeutics (proteins and siRNA). The application of PRINT technology for generating aerosols for pulmonary applications has also been described. This contribution is an example of the attributes required from a nanofabrication technique to circumvent manufacturing-related issues in pharmaceutical nanotechnology. \n \nThe paper by F. Lallemand et al. delineates various aspects of and challenges in ocular drug delivery and systematically describes development of Novasorb, a cationic nanoemulsion-based platform ocular delivery system. The authors have furnished a detailed description of the formulation development aspects and ocular safety of excipients which is followed by in vivo proof-of-concept and clinical development. This paper gives clear insight into various challenges faced for developing nanomedicine for ocular delivery. The paper by J. D. Heidel and T. Schleup throws light on the various applications of self-assembled nanocarriers consisting of cyclodextrin based polymers. The authors describe various developmental aspects of two platforms based on cyclodextrin-based polymers (Cyclosert and RONDEL) which can enable efficient delivery of drugs or nucleic-acid-based therapeutics. The translational aspects of both the nanocarriers and in vivo proof-of-concept have also been furnished in this paper. The research paper by J. Rios-Doria et al. gives insight into developmental aspects of a pH sensitive cross-linked polymeric micelle technology (IVECT). The authors describe synthesis of the polymeric micelles, their ability to encapsulate various drugs, and in vivo proof-of-concept for anticancer drugs like daunorubicin and BB4007431. \n \nIn a nutshell, we believe that this special issue would give readers insight into various aspects involved in translating nanotechnology from bench to pharmaceutical market. Moreover, the special issue also includes some contributions about nanotechnologies that are currently under clinical development. \n \n \nAbhijit A. Date \n \nRajesh R. Patil \n \nRiccardo Panicucci \n \nEliana B. Souto \n \nRobert W. Lee","PeriodicalId":15575,"journal":{"name":"Journal of drug delivery","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/678910","citationCount":"8","resultStr":"{\"title\":\"Translating nanotechnology from bench to pharmaceutical market: barriers, success, and promises.\",\"authors\":\"Abhijit A Date, Rajesh R Patil, Riccardo Panicucci, Eliana B Souto, Robert W Lee\",\"doi\":\"10.1155/2012/678910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanotechnology is a buzzword of this millennium and it has transformed the face of research in science and technology. The advent of nanotechnology has also influenced the biomedical and pharmaceutical research since last decade. Various nano-architectures have been designed for improving the therapeutic performance of drugs, proteins, peptides, and genes and to achieve their targeting at the site of action. Although nanotechnology has demonstrated dramatic potential in drug delivery research, like any technology, its real success depends on the ability of drug delivery scientists to translate and scale innovations to the commercial pharmaceutical products. It is indeed a very challenging task to successfully overcome manufacturing, clinical, and regulatory hurdles associated with a nanotech product. Nevertheless, the pharmaceutical industry has witnessed commercialization of the nanotechnology-based products for various applications. In the present special issue, we have tried to consolidate various aspects of existing and upcoming nanotechnologies for drug delivery. \\n \\nContribution by V. Morigi et al. takes an overview of business potential and market trend of pharmaceutical nanotechnology. The authors have also discussed financial aspects of nanotechnology by citing noteworthy examples of few nanotech products that have already been commercialized. This contribution could be useful to scientists aiming to start up nanotechnological business ventures. Contribution by N. Anton et al. demonstrates how nanotechnology can change the face of conventional drug delivery systems. In this interesting investigation, the authors demonstrate that coating of conventional tablets with lipid nanoemulsion can be used to modulate the release of the drug from tablet matrix. The paper by P. Severino et al. gives an account of potential of solid lipid nanocarriers for the oral delivery of drugs and peptides. The authors have provided information about the lipids that can be used for oral delivery, role of lipids in the oral delivery, toxicological aspects of lipid nanocarriers, and products under clinical development. \\n \\nS. Banerjee et al. have given a complete overview of polyethylene-glycol- (PEG-) based conjugates for drug delivery. The contribution fosters understanding design aspects of and chemistry behind PEG-based nano-architectures for drug delivery. Furthermore, the paper has a detailed discussion on the various PEG-conjugates available in the pharmaceutical market. Contribution by A. Garcia et al. highlights the potential of particle replication in nonwetting templates (PRINT), a platform technology based on lithographic techniques for drug delivery applications. The contribution clearly demonstrates potential of PRINT technology to generate particles of various, but precise, morphology for a variety of drugs and biotechnology-based therapeutics (proteins and siRNA). The application of PRINT technology for generating aerosols for pulmonary applications has also been described. This contribution is an example of the attributes required from a nanofabrication technique to circumvent manufacturing-related issues in pharmaceutical nanotechnology. \\n \\nThe paper by F. Lallemand et al. delineates various aspects of and challenges in ocular drug delivery and systematically describes development of Novasorb, a cationic nanoemulsion-based platform ocular delivery system. The authors have furnished a detailed description of the formulation development aspects and ocular safety of excipients which is followed by in vivo proof-of-concept and clinical development. This paper gives clear insight into various challenges faced for developing nanomedicine for ocular delivery. The paper by J. D. Heidel and T. Schleup throws light on the various applications of self-assembled nanocarriers consisting of cyclodextrin based polymers. The authors describe various developmental aspects of two platforms based on cyclodextrin-based polymers (Cyclosert and RONDEL) which can enable efficient delivery of drugs or nucleic-acid-based therapeutics. The translational aspects of both the nanocarriers and in vivo proof-of-concept have also been furnished in this paper. The research paper by J. Rios-Doria et al. gives insight into developmental aspects of a pH sensitive cross-linked polymeric micelle technology (IVECT). The authors describe synthesis of the polymeric micelles, their ability to encapsulate various drugs, and in vivo proof-of-concept for anticancer drugs like daunorubicin and BB4007431. \\n \\nIn a nutshell, we believe that this special issue would give readers insight into various aspects involved in translating nanotechnology from bench to pharmaceutical market. Moreover, the special issue also includes some contributions about nanotechnologies that are currently under clinical development. \\n \\n \\nAbhijit A. Date \\n \\nRajesh R. Patil \\n \\nRiccardo Panicucci \\n \\nEliana B. Souto \\n \\nRobert W. Lee\",\"PeriodicalId\":15575,\"journal\":{\"name\":\"Journal of drug delivery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2012/678910\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of drug delivery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2012/678910\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/5/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of drug delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/678910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/5/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Translating nanotechnology from bench to pharmaceutical market: barriers, success, and promises.
Nanotechnology is a buzzword of this millennium and it has transformed the face of research in science and technology. The advent of nanotechnology has also influenced the biomedical and pharmaceutical research since last decade. Various nano-architectures have been designed for improving the therapeutic performance of drugs, proteins, peptides, and genes and to achieve their targeting at the site of action. Although nanotechnology has demonstrated dramatic potential in drug delivery research, like any technology, its real success depends on the ability of drug delivery scientists to translate and scale innovations to the commercial pharmaceutical products. It is indeed a very challenging task to successfully overcome manufacturing, clinical, and regulatory hurdles associated with a nanotech product. Nevertheless, the pharmaceutical industry has witnessed commercialization of the nanotechnology-based products for various applications. In the present special issue, we have tried to consolidate various aspects of existing and upcoming nanotechnologies for drug delivery. Contribution by V. Morigi et al. takes an overview of business potential and market trend of pharmaceutical nanotechnology. The authors have also discussed financial aspects of nanotechnology by citing noteworthy examples of few nanotech products that have already been commercialized. This contribution could be useful to scientists aiming to start up nanotechnological business ventures. Contribution by N. Anton et al. demonstrates how nanotechnology can change the face of conventional drug delivery systems. In this interesting investigation, the authors demonstrate that coating of conventional tablets with lipid nanoemulsion can be used to modulate the release of the drug from tablet matrix. The paper by P. Severino et al. gives an account of potential of solid lipid nanocarriers for the oral delivery of drugs and peptides. The authors have provided information about the lipids that can be used for oral delivery, role of lipids in the oral delivery, toxicological aspects of lipid nanocarriers, and products under clinical development. S. Banerjee et al. have given a complete overview of polyethylene-glycol- (PEG-) based conjugates for drug delivery. The contribution fosters understanding design aspects of and chemistry behind PEG-based nano-architectures for drug delivery. Furthermore, the paper has a detailed discussion on the various PEG-conjugates available in the pharmaceutical market. Contribution by A. Garcia et al. highlights the potential of particle replication in nonwetting templates (PRINT), a platform technology based on lithographic techniques for drug delivery applications. The contribution clearly demonstrates potential of PRINT technology to generate particles of various, but precise, morphology for a variety of drugs and biotechnology-based therapeutics (proteins and siRNA). The application of PRINT technology for generating aerosols for pulmonary applications has also been described. This contribution is an example of the attributes required from a nanofabrication technique to circumvent manufacturing-related issues in pharmaceutical nanotechnology. The paper by F. Lallemand et al. delineates various aspects of and challenges in ocular drug delivery and systematically describes development of Novasorb, a cationic nanoemulsion-based platform ocular delivery system. The authors have furnished a detailed description of the formulation development aspects and ocular safety of excipients which is followed by in vivo proof-of-concept and clinical development. This paper gives clear insight into various challenges faced for developing nanomedicine for ocular delivery. The paper by J. D. Heidel and T. Schleup throws light on the various applications of self-assembled nanocarriers consisting of cyclodextrin based polymers. The authors describe various developmental aspects of two platforms based on cyclodextrin-based polymers (Cyclosert and RONDEL) which can enable efficient delivery of drugs or nucleic-acid-based therapeutics. The translational aspects of both the nanocarriers and in vivo proof-of-concept have also been furnished in this paper. The research paper by J. Rios-Doria et al. gives insight into developmental aspects of a pH sensitive cross-linked polymeric micelle technology (IVECT). The authors describe synthesis of the polymeric micelles, their ability to encapsulate various drugs, and in vivo proof-of-concept for anticancer drugs like daunorubicin and BB4007431. In a nutshell, we believe that this special issue would give readers insight into various aspects involved in translating nanotechnology from bench to pharmaceutical market. Moreover, the special issue also includes some contributions about nanotechnologies that are currently under clinical development. Abhijit A. Date Rajesh R. Patil Riccardo Panicucci Eliana B. Souto Robert W. Lee
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of drug delivery
Journal of drug delivery PHARMACOLOGY & PHARMACY-
自引率
0.00%
发文量
0
期刊最新文献
Corrigendum to "Alkyl Length Effects on the DNA Transport Properties of Cu (II) and Zn(II) Metallovesicles: An In Vitro and In Vivo Study". Dry Powder and Budesonide Inhalation Suspension Deposition Rates in Asthmatic Airway-Obstruction Regions. Rate of Drug Coating Dissolution Determines In-Tissue Drug Retention and Durability of Biological Efficacy. Alkyl Length Effects on the DNA Transport Properties of Cu (II) and Zn(II) Metallovesicles: An In Vitro and In Vivo Study. Potential of Cocoa Pod Husk Pectin-Based Modified Release Capsules as a Carrier for Chronodelivery of Hydrocortisone in Sprague-Dawley Rats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1