{"title":"中缝背核神经回路与大麻素介导的大鼠脑伏隔核5-羟色胺外排增加有关。","authors":"Rui Tao, Zhiyuan Ma","doi":"10.5402/2012/276902","DOIUrl":null,"url":null,"abstract":"<p><p>In vivo microdialysis was used in this study to reveal the role of cannabinoids in regulating serotonin (5-HT) efflux in the nucleus accumbens (NAcc) and dorsal raphe nucleus (DRN). The cannabinoid CB1 receptor agonists WIN55212-2 and CP55940 systematically administered to rats caused significant increases in 5-HT efflux in the NAcc but failed to have an effect in the DRN. To reveal mechanisms underlying regionally selective responses, we tested the hypothesis that cannabinoids have both direct and indirect effects on 5-HT efflux, depending on the location of CB1 receptors in the neural circuit between DRN and NAcc. We showed that the direct effect of cannabinoids caused a reduction in 5-HT efflux whereas the indirect effect resulted in an increase. Furthermore, the indirect effect was blocked by the GABA(A) receptor antagonist bicuculline in the DRN, suggesting that the action is likely due to a presynaptic inhibition on GABAergic activity that exerts a tonic influence on neuronal circuits regulating 5-HT efflux. Involvement of GABAergic neurons was confirmed by measuring changes in GABA efflux. Taken together, our study suggests that cannabinoids may have direct and indirect effects on the 5-HT regulatory circuits, resulting in regionally selective changes of 5-HT efflux in the brain.</p>","PeriodicalId":14662,"journal":{"name":"ISRN Pharmacology","volume":"2012 ","pages":"276902"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5402/2012/276902","citationCount":"19","resultStr":"{\"title\":\"Neural Circuit in the Dorsal Raphe Nucleus Responsible for Cannabinoid-Mediated Increases in 5-HT Efflux in the Nucleus Accumbens of the Rat Brain.\",\"authors\":\"Rui Tao, Zhiyuan Ma\",\"doi\":\"10.5402/2012/276902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In vivo microdialysis was used in this study to reveal the role of cannabinoids in regulating serotonin (5-HT) efflux in the nucleus accumbens (NAcc) and dorsal raphe nucleus (DRN). The cannabinoid CB1 receptor agonists WIN55212-2 and CP55940 systematically administered to rats caused significant increases in 5-HT efflux in the NAcc but failed to have an effect in the DRN. To reveal mechanisms underlying regionally selective responses, we tested the hypothesis that cannabinoids have both direct and indirect effects on 5-HT efflux, depending on the location of CB1 receptors in the neural circuit between DRN and NAcc. We showed that the direct effect of cannabinoids caused a reduction in 5-HT efflux whereas the indirect effect resulted in an increase. Furthermore, the indirect effect was blocked by the GABA(A) receptor antagonist bicuculline in the DRN, suggesting that the action is likely due to a presynaptic inhibition on GABAergic activity that exerts a tonic influence on neuronal circuits regulating 5-HT efflux. Involvement of GABAergic neurons was confirmed by measuring changes in GABA efflux. Taken together, our study suggests that cannabinoids may have direct and indirect effects on the 5-HT regulatory circuits, resulting in regionally selective changes of 5-HT efflux in the brain.</p>\",\"PeriodicalId\":14662,\"journal\":{\"name\":\"ISRN Pharmacology\",\"volume\":\"2012 \",\"pages\":\"276902\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.5402/2012/276902\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISRN Pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5402/2012/276902\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/7/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISRN Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5402/2012/276902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/7/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Neural Circuit in the Dorsal Raphe Nucleus Responsible for Cannabinoid-Mediated Increases in 5-HT Efflux in the Nucleus Accumbens of the Rat Brain.
In vivo microdialysis was used in this study to reveal the role of cannabinoids in regulating serotonin (5-HT) efflux in the nucleus accumbens (NAcc) and dorsal raphe nucleus (DRN). The cannabinoid CB1 receptor agonists WIN55212-2 and CP55940 systematically administered to rats caused significant increases in 5-HT efflux in the NAcc but failed to have an effect in the DRN. To reveal mechanisms underlying regionally selective responses, we tested the hypothesis that cannabinoids have both direct and indirect effects on 5-HT efflux, depending on the location of CB1 receptors in the neural circuit between DRN and NAcc. We showed that the direct effect of cannabinoids caused a reduction in 5-HT efflux whereas the indirect effect resulted in an increase. Furthermore, the indirect effect was blocked by the GABA(A) receptor antagonist bicuculline in the DRN, suggesting that the action is likely due to a presynaptic inhibition on GABAergic activity that exerts a tonic influence on neuronal circuits regulating 5-HT efflux. Involvement of GABAergic neurons was confirmed by measuring changes in GABA efflux. Taken together, our study suggests that cannabinoids may have direct and indirect effects on the 5-HT regulatory circuits, resulting in regionally selective changes of 5-HT efflux in the brain.