估计一步有益突变的数量。

Pub Date : 2012-07-19 DOI:10.1515/1544-6115.1788
Andrzej J Wojtowicz, Craig R Miller, Paul Joyce
{"title":"估计一步有益突变的数量。","authors":"Andrzej J Wojtowicz,&nbsp;Craig R Miller,&nbsp;Paul Joyce","doi":"10.1515/1544-6115.1788","DOIUrl":null,"url":null,"abstract":"<p><p>Mutations that confer a selective advantage to an organism are the raw material upon which natural selection acts. The number of such mutations that are available is a central quantity of interest for understanding the tempo and trajectory of adaptive evolution. While this quantity is typically unknown, it can be estimated with varying levels of accuracy based on data obtained experimentally. We propose a method for estimating the number of beneficial mutations that accounts for the evolutionary forces that generate the data. Our model-based parametric approach is compared to an adjusted nonparametric abundance-based coverage estimator. We show that, in general, our estimator performs better. When the number of mutations is small, however, the performances of the two estimators are similar.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2012-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/1544-6115.1788","citationCount":"0","resultStr":"{\"title\":\"Estimating the number of one-step beneficial mutations.\",\"authors\":\"Andrzej J Wojtowicz,&nbsp;Craig R Miller,&nbsp;Paul Joyce\",\"doi\":\"10.1515/1544-6115.1788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mutations that confer a selective advantage to an organism are the raw material upon which natural selection acts. The number of such mutations that are available is a central quantity of interest for understanding the tempo and trajectory of adaptive evolution. While this quantity is typically unknown, it can be estimated with varying levels of accuracy based on data obtained experimentally. We propose a method for estimating the number of beneficial mutations that accounts for the evolutionary forces that generate the data. Our model-based parametric approach is compared to an adjusted nonparametric abundance-based coverage estimator. We show that, in general, our estimator performs better. When the number of mutations is small, however, the performances of the two estimators are similar.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2012-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/1544-6115.1788\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/1544-6115.1788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/1544-6115.1788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

赋予有机体选择优势的突变是自然选择作用的原料。可用的这种突变的数量是理解适应性进化的速度和轨迹的核心数量。虽然这个数量通常是未知的,但可以根据实验获得的数据以不同程度的精度进行估计。我们提出了一种方法来估计有益突变的数量,这些突变解释了产生数据的进化力量。我们的基于模型的参数方法与调整后的基于非参数丰度的覆盖估计进行了比较。我们证明,一般来说,我们的估计器性能更好。然而,当突变数较小时,这两种估计器的性能是相似的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Estimating the number of one-step beneficial mutations.

Mutations that confer a selective advantage to an organism are the raw material upon which natural selection acts. The number of such mutations that are available is a central quantity of interest for understanding the tempo and trajectory of adaptive evolution. While this quantity is typically unknown, it can be estimated with varying levels of accuracy based on data obtained experimentally. We propose a method for estimating the number of beneficial mutations that accounts for the evolutionary forces that generate the data. Our model-based parametric approach is compared to an adjusted nonparametric abundance-based coverage estimator. We show that, in general, our estimator performs better. When the number of mutations is small, however, the performances of the two estimators are similar.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1