{"title":"Pim-1 激酶 P 环的灵活性:观察与抑制剂相互作用诱导的新构象。","authors":"Lorien J Parker, Hisami Watanabe, Keiko Tsuganezawa, Yuri Tomabechi, Noriko Handa, Mikako Shirouzu, Hitomi Yuki, Teruki Honma, Naoko Ogawa, Tetsuo Nagano, Shigeyuki Yokoyama, Akiko Tanaka","doi":"10.1107/S1744309112027108","DOIUrl":null,"url":null,"abstract":"<p><p>The serine/threonine kinase Pim-1 is emerging as a promising target for cancer therapeutics. Much attention has recently been focused on identifying potential Pim-1 inhibitor candidates for the treatment of haematopoietic malignancies. The outcome of a rational drug-design project has recently been reported [Nakano et al. (2012), J. Med. Chem. 55, 5151-5156]. The report described the process of optimization of the structure-activity relationship and detailed from a medicinal chemistry perspective the development of a low-potency and nonselective compound initially identified from in silico screening into a potent, selective and metabolically stable Pim-1 inhibitor. Here, the structures of the initial in silico hits are reported and the noteworthy features of the Pim-1 complex structures are described. A particular focus was placed on the rearrangement of the glycine-rich P-loop region that was observed for one of the initial compounds, (Z)-7-(azepan-1-ylmethyl)-2-[(1H-indol-3-yl)methylidene]-6-hydroxy-1-benzofuran-3(2H)-one (compound 1), and was also found in all further derivatives. This novel P-loop conformation, which appears to be stabilized by an additional interaction with the β3 strand located above the binding site, is not usually observed in Pim-1 structures.</p>","PeriodicalId":7310,"journal":{"name":"Acta Crystallographica Section F-structural Biology and Crystallization Communications","volume":"68 Pt 8","pages":"860-6"},"PeriodicalIF":0.9000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412761/pdf/f-68-00860.pdf","citationCount":"0","resultStr":"{\"title\":\"Flexibility of the P-loop of Pim-1 kinase: observation of a novel conformation induced by interaction with an inhibitor.\",\"authors\":\"Lorien J Parker, Hisami Watanabe, Keiko Tsuganezawa, Yuri Tomabechi, Noriko Handa, Mikako Shirouzu, Hitomi Yuki, Teruki Honma, Naoko Ogawa, Tetsuo Nagano, Shigeyuki Yokoyama, Akiko Tanaka\",\"doi\":\"10.1107/S1744309112027108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The serine/threonine kinase Pim-1 is emerging as a promising target for cancer therapeutics. Much attention has recently been focused on identifying potential Pim-1 inhibitor candidates for the treatment of haematopoietic malignancies. The outcome of a rational drug-design project has recently been reported [Nakano et al. (2012), J. Med. Chem. 55, 5151-5156]. The report described the process of optimization of the structure-activity relationship and detailed from a medicinal chemistry perspective the development of a low-potency and nonselective compound initially identified from in silico screening into a potent, selective and metabolically stable Pim-1 inhibitor. Here, the structures of the initial in silico hits are reported and the noteworthy features of the Pim-1 complex structures are described. A particular focus was placed on the rearrangement of the glycine-rich P-loop region that was observed for one of the initial compounds, (Z)-7-(azepan-1-ylmethyl)-2-[(1H-indol-3-yl)methylidene]-6-hydroxy-1-benzofuran-3(2H)-one (compound 1), and was also found in all further derivatives. This novel P-loop conformation, which appears to be stabilized by an additional interaction with the β3 strand located above the binding site, is not usually observed in Pim-1 structures.</p>\",\"PeriodicalId\":7310,\"journal\":{\"name\":\"Acta Crystallographica Section F-structural Biology and Crystallization Communications\",\"volume\":\"68 Pt 8\",\"pages\":\"860-6\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2012-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412761/pdf/f-68-00860.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica Section F-structural Biology and Crystallization Communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1107/S1744309112027108\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/7/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section F-structural Biology and Crystallization Communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S1744309112027108","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/7/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Flexibility of the P-loop of Pim-1 kinase: observation of a novel conformation induced by interaction with an inhibitor.
The serine/threonine kinase Pim-1 is emerging as a promising target for cancer therapeutics. Much attention has recently been focused on identifying potential Pim-1 inhibitor candidates for the treatment of haematopoietic malignancies. The outcome of a rational drug-design project has recently been reported [Nakano et al. (2012), J. Med. Chem. 55, 5151-5156]. The report described the process of optimization of the structure-activity relationship and detailed from a medicinal chemistry perspective the development of a low-potency and nonselective compound initially identified from in silico screening into a potent, selective and metabolically stable Pim-1 inhibitor. Here, the structures of the initial in silico hits are reported and the noteworthy features of the Pim-1 complex structures are described. A particular focus was placed on the rearrangement of the glycine-rich P-loop region that was observed for one of the initial compounds, (Z)-7-(azepan-1-ylmethyl)-2-[(1H-indol-3-yl)methylidene]-6-hydroxy-1-benzofuran-3(2H)-one (compound 1), and was also found in all further derivatives. This novel P-loop conformation, which appears to be stabilized by an additional interaction with the β3 strand located above the binding site, is not usually observed in Pim-1 structures.
期刊介绍:
Acta Crystallographica Section F is a rapid structural biology communications journal.
Articles on any aspect of structural biology, including structures determined using high-throughput methods or from iterative studies such as those used in the pharmaceutical industry, are welcomed by the journal.
The journal offers the option of open access, and all communications benefit from unlimited free use of colour illustrations and no page charges. Authors are encouraged to submit multimedia content for publication with their articles.
Acta Cryst. F has a dedicated online tool called publBio that is designed to make the preparation and submission of articles easier for authors.