{"title":"解卷和复卷:解旋酶的双面?","authors":"Yuliang Wu","doi":"10.1155/2012/140601","DOIUrl":null,"url":null,"abstract":"<p><p>Helicases are enzymes that use ATP-driven motor force to unwind double-stranded DNA or RNA. Recently, increasing evidence demonstrates that some helicases also possess rewinding activity-in other words, they can anneal two complementary single-stranded nucleic acids. All five members of the human RecQ helicase family, helicase PIF1, mitochondrial helicase TWINKLE, and helicase/nuclease Dna2 have been shown to possess strand-annealing activity. Moreover, two recently identified helicases-HARP and AH2 have only ATP-dependent rewinding activity. These findings not only enhance our understanding of helicase enzymes but also establish the presence of a new type of protein: annealing helicases. This paper discusses what is known about these helicases, focusing on their biochemical activity to zip and unzip double-stranded DNA and/or RNA, their possible regulation mechanisms, and biological functions.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2012 ","pages":"140601"},"PeriodicalIF":1.3000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/140601","citationCount":"82","resultStr":"{\"title\":\"Unwinding and rewinding: double faces of helicase?\",\"authors\":\"Yuliang Wu\",\"doi\":\"10.1155/2012/140601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Helicases are enzymes that use ATP-driven motor force to unwind double-stranded DNA or RNA. Recently, increasing evidence demonstrates that some helicases also possess rewinding activity-in other words, they can anneal two complementary single-stranded nucleic acids. All five members of the human RecQ helicase family, helicase PIF1, mitochondrial helicase TWINKLE, and helicase/nuclease Dna2 have been shown to possess strand-annealing activity. Moreover, two recently identified helicases-HARP and AH2 have only ATP-dependent rewinding activity. These findings not only enhance our understanding of helicase enzymes but also establish the presence of a new type of protein: annealing helicases. This paper discusses what is known about these helicases, focusing on their biochemical activity to zip and unzip double-stranded DNA and/or RNA, their possible regulation mechanisms, and biological functions.</p>\",\"PeriodicalId\":16575,\"journal\":{\"name\":\"Journal of Nucleic Acids\",\"volume\":\"2012 \",\"pages\":\"140601\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2012/140601\",\"citationCount\":\"82\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nucleic Acids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2012/140601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/7/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nucleic Acids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/140601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/7/19 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Unwinding and rewinding: double faces of helicase?
Helicases are enzymes that use ATP-driven motor force to unwind double-stranded DNA or RNA. Recently, increasing evidence demonstrates that some helicases also possess rewinding activity-in other words, they can anneal two complementary single-stranded nucleic acids. All five members of the human RecQ helicase family, helicase PIF1, mitochondrial helicase TWINKLE, and helicase/nuclease Dna2 have been shown to possess strand-annealing activity. Moreover, two recently identified helicases-HARP and AH2 have only ATP-dependent rewinding activity. These findings not only enhance our understanding of helicase enzymes but also establish the presence of a new type of protein: annealing helicases. This paper discusses what is known about these helicases, focusing on their biochemical activity to zip and unzip double-stranded DNA and/or RNA, their possible regulation mechanisms, and biological functions.