检索引用疾病特定定制的关键发现的放射学报告。

The open medical informatics journal Pub Date : 2012-01-01 Epub Date: 2012-08-10 DOI:10.2174/1874431101206010028
Ronilda Lacson, Nathanael Sugarbaker, Luciano M Prevedello, Ip Ivan, Wendy Mar, Katherine P Andriole, Ramin Khorasani
{"title":"检索引用疾病特定定制的关键发现的放射学报告。","authors":"Ronilda Lacson,&nbsp;Nathanael Sugarbaker,&nbsp;Luciano M Prevedello,&nbsp;Ip Ivan,&nbsp;Wendy Mar,&nbsp;Katherine P Andriole,&nbsp;Ramin Khorasani","doi":"10.2174/1874431101206010028","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Communication of critical results from diagnostic procedures between caregivers is a Joint Commission national patient safety goal. Evaluating critical result communication often requires manual analysis of voluminous data, especially when reviewing unstructured textual results of radiologic findings. Information retrieval (IR) tools can facilitate this process by enabling automated retrieval of radiology reports that cite critical imaging findings. However, IR tools that have been developed for one disease or imaging modality often need substantial reconfiguration before they can be utilized for another disease entity.</p><p><strong>Purpose: </strong>THIS PAPER: 1) describes the process of customizing two Natural Language Processing (NLP) and Information Retrieval/Extraction applications - an open-source toolkit, A Nearly New Information Extraction system (ANNIE); and an application developed in-house, Information for Searching Content with an Ontology-Utilizing Toolkit (iSCOUT) - to illustrate the varying levels of customization required for different disease entities and; 2) evaluates each application's performance in identifying and retrieving radiology reports citing critical imaging findings for three distinct diseases, pulmonary nodule, pneumothorax, and pulmonary embolus.</p><p><strong>Results: </strong>Both applications can be utilized for retrieval. iSCOUT and ANNIE had precision values between 0.90-0.98 and recall values between 0.79 and 0.94. ANNIE had consistently higher precision but required more customization.</p><p><strong>Conclusion: </strong>Understanding the customizations involved in utilizing NLP applications for various diseases will enable users to select the most suitable tool for specific tasks.</p>","PeriodicalId":88331,"journal":{"name":"The open medical informatics journal","volume":"6 ","pages":"28-35"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/46/91/TOMINFOJ-6-28.PMC3428631.pdf","citationCount":"13","resultStr":"{\"title\":\"Retrieval of radiology reports citing critical findings with disease-specific customization.\",\"authors\":\"Ronilda Lacson,&nbsp;Nathanael Sugarbaker,&nbsp;Luciano M Prevedello,&nbsp;Ip Ivan,&nbsp;Wendy Mar,&nbsp;Katherine P Andriole,&nbsp;Ramin Khorasani\",\"doi\":\"10.2174/1874431101206010028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Communication of critical results from diagnostic procedures between caregivers is a Joint Commission national patient safety goal. Evaluating critical result communication often requires manual analysis of voluminous data, especially when reviewing unstructured textual results of radiologic findings. Information retrieval (IR) tools can facilitate this process by enabling automated retrieval of radiology reports that cite critical imaging findings. However, IR tools that have been developed for one disease or imaging modality often need substantial reconfiguration before they can be utilized for another disease entity.</p><p><strong>Purpose: </strong>THIS PAPER: 1) describes the process of customizing two Natural Language Processing (NLP) and Information Retrieval/Extraction applications - an open-source toolkit, A Nearly New Information Extraction system (ANNIE); and an application developed in-house, Information for Searching Content with an Ontology-Utilizing Toolkit (iSCOUT) - to illustrate the varying levels of customization required for different disease entities and; 2) evaluates each application's performance in identifying and retrieving radiology reports citing critical imaging findings for three distinct diseases, pulmonary nodule, pneumothorax, and pulmonary embolus.</p><p><strong>Results: </strong>Both applications can be utilized for retrieval. iSCOUT and ANNIE had precision values between 0.90-0.98 and recall values between 0.79 and 0.94. ANNIE had consistently higher precision but required more customization.</p><p><strong>Conclusion: </strong>Understanding the customizations involved in utilizing NLP applications for various diseases will enable users to select the most suitable tool for specific tasks.</p>\",\"PeriodicalId\":88331,\"journal\":{\"name\":\"The open medical informatics journal\",\"volume\":\"6 \",\"pages\":\"28-35\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/46/91/TOMINFOJ-6-28.PMC3428631.pdf\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The open medical informatics journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874431101206010028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/8/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The open medical informatics journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874431101206010028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/8/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

背景:在护理人员之间沟通诊断程序的关键结果是联合委员会国家患者安全目标。评估关键结果交流通常需要人工分析大量数据,特别是在审查放射学发现的非结构化文本结果时。信息检索(IR)工具可以通过自动检索引用关键成像结果的放射学报告来促进这一过程。然而,为一种疾病或成像模式开发的红外工具在用于另一种疾病实体之前通常需要进行大量的重新配置。本文的目的:1)描述了自定义两个自然语言处理(NLP)和信息检索/提取应用程序的过程——一个开源工具包,一个几乎新的信息提取系统(ANNIE);以及内部开发的应用程序,使用本体利用工具包搜索内容的信息(iSCOUT),以说明不同疾病实体所需的不同级别的定制;2)评估每个应用程序在识别和检索引用三种不同疾病(肺结节、气胸和肺栓塞)的关键影像学发现的放射学报告方面的表现。结果:两种应用程序均可用于检索。iSCOUT和ANNIE的精度值在0.90 ~ 0.98之间,召回率在0.79 ~ 0.94之间。ANNIE始终具有更高的精度,但需要更多的定制。结论:了解在各种疾病中使用NLP应用程序所涉及的定制将使用户能够为特定任务选择最合适的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Retrieval of radiology reports citing critical findings with disease-specific customization.

Background: Communication of critical results from diagnostic procedures between caregivers is a Joint Commission national patient safety goal. Evaluating critical result communication often requires manual analysis of voluminous data, especially when reviewing unstructured textual results of radiologic findings. Information retrieval (IR) tools can facilitate this process by enabling automated retrieval of radiology reports that cite critical imaging findings. However, IR tools that have been developed for one disease or imaging modality often need substantial reconfiguration before they can be utilized for another disease entity.

Purpose: THIS PAPER: 1) describes the process of customizing two Natural Language Processing (NLP) and Information Retrieval/Extraction applications - an open-source toolkit, A Nearly New Information Extraction system (ANNIE); and an application developed in-house, Information for Searching Content with an Ontology-Utilizing Toolkit (iSCOUT) - to illustrate the varying levels of customization required for different disease entities and; 2) evaluates each application's performance in identifying and retrieving radiology reports citing critical imaging findings for three distinct diseases, pulmonary nodule, pneumothorax, and pulmonary embolus.

Results: Both applications can be utilized for retrieval. iSCOUT and ANNIE had precision values between 0.90-0.98 and recall values between 0.79 and 0.94. ANNIE had consistently higher precision but required more customization.

Conclusion: Understanding the customizations involved in utilizing NLP applications for various diseases will enable users to select the most suitable tool for specific tasks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Primary Healthcare Data Management Practice and Associated Factors: The Case of Health Extension Workers in Northwest Ethiopia Factors Impacting the Use of Terminology to Convey Diagnostic Certainty in Radiology Reports Developing a Dashboard Software for the ICUs and Studying its Impact on Reducing the Ventilator-Associated Pneumonia Teleburn: Designing A Telemedicine Application to Improve Burn Treatment. A Review of Data Quality Assessment in Emergency Medical Services.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1