对于非专业的生物信息学家来说,这是一个简单的方法,可以为没有已知同源物的蛋白质建立可实验验证的假设。

Alexander Zawaira, Youtaro Shibayama
{"title":"对于非专业的生物信息学家来说,这是一个简单的方法,可以为没有已知同源物的蛋白质建立可实验验证的假设。","authors":"Alexander Zawaira,&nbsp;Youtaro Shibayama","doi":"10.1007/s10969-012-9141-7","DOIUrl":null,"url":null,"abstract":"<p><p>The study of the protein-protein interactions (PPIs) of unique ORFs is a strategy for deciphering the biological roles of unique ORFs of interest. For uniform reference, we define unique ORFs as those for which no matching protein is found after PDB-BLAST search with default parameters. The uniqueness of the ORFs generally precludes the straightforward use of structure-based approaches in the design of experiments to explore PPIs. Many open-source bioinformatics tools, from the commonly-used to the relatively esoteric, have been built and validated to perform analyses and/or predictions of sorts on proteins. How can these available tools be combined into a protocol that helps the non-expert bioinformaticist researcher to design experiments to explore the PPIs of their unique ORF? Here we define a pragmatic protocol based on accessibility of software to achieve this and we make it concrete by applying it on two proteins-the ImuB and ImuA' proteins from Mycobacterium tuberculosis. The protocol is pragmatic in that decisions are made largely based on the availability of easy-to-use freeware. We define the following basic and user-friendly software pathway to build testable PPI hypotheses for a query protein sequence: PSI-PRED → MUSTER → metaPPISP → ASAView and ConSurf. Where possible, other analytical and/or predictive tools may be included. Our protocol combines the software predictions and analyses with general bioinformatics principles to arrive at consensus, prioritised and testable PPI hypotheses.</p>","PeriodicalId":73957,"journal":{"name":"Journal of structural and functional genomics","volume":"13 4","pages":"185-200"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10969-012-9141-7","citationCount":"0","resultStr":"{\"title\":\"A simple recipe for the non-expert bioinformaticist for building experimentally-testable hypotheses for proteins with no known homologs.\",\"authors\":\"Alexander Zawaira,&nbsp;Youtaro Shibayama\",\"doi\":\"10.1007/s10969-012-9141-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The study of the protein-protein interactions (PPIs) of unique ORFs is a strategy for deciphering the biological roles of unique ORFs of interest. For uniform reference, we define unique ORFs as those for which no matching protein is found after PDB-BLAST search with default parameters. The uniqueness of the ORFs generally precludes the straightforward use of structure-based approaches in the design of experiments to explore PPIs. Many open-source bioinformatics tools, from the commonly-used to the relatively esoteric, have been built and validated to perform analyses and/or predictions of sorts on proteins. How can these available tools be combined into a protocol that helps the non-expert bioinformaticist researcher to design experiments to explore the PPIs of their unique ORF? Here we define a pragmatic protocol based on accessibility of software to achieve this and we make it concrete by applying it on two proteins-the ImuB and ImuA' proteins from Mycobacterium tuberculosis. The protocol is pragmatic in that decisions are made largely based on the availability of easy-to-use freeware. We define the following basic and user-friendly software pathway to build testable PPI hypotheses for a query protein sequence: PSI-PRED → MUSTER → metaPPISP → ASAView and ConSurf. Where possible, other analytical and/or predictive tools may be included. Our protocol combines the software predictions and analyses with general bioinformatics principles to arrive at consensus, prioritised and testable PPI hypotheses.</p>\",\"PeriodicalId\":73957,\"journal\":{\"name\":\"Journal of structural and functional genomics\",\"volume\":\"13 4\",\"pages\":\"185-200\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10969-012-9141-7\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of structural and functional genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10969-012-9141-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/9/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of structural and functional genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10969-012-9141-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/9/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究独特orf的蛋白质-蛋白质相互作用(PPIs)是一种破译独特orf生物学作用的策略。为统一参考,我们将unique orf定义为使用默认参数进行PDB-BLAST搜索后未找到匹配蛋白的orf。orf的独特性通常排除了在实验设计中直接使用基于结构的方法来探索ppi。许多开源的生物信息学工具,从常用的到相对深奥的,已经建立并验证了对蛋白质进行各种分析和/或预测。如何将这些可用的工具组合成一个协议,帮助非专业的生物信息学家研究人员设计实验,以探索其独特的ORF的ppi ?在这里,我们定义了一个基于软件可访问性的实用协议来实现这一目标,并通过将其应用于结核分枝杆菌的两种蛋白质- ImuB和ImuA'蛋白质使其具体化。该协议是实用的,因为决策主要基于易于使用的免费软件的可用性。我们定义了以下基本和用户友好的软件路径来构建可测试的PPI假设,以查询蛋白质序列:PSI-PRED→MUSTER→metaPPISP→ASAView和ConSurf。在可能的情况下,可以包括其他分析和/或预测工具。我们的方案将软件预测和分析与一般生物信息学原理相结合,以达成共识,优先和可测试的PPI假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A simple recipe for the non-expert bioinformaticist for building experimentally-testable hypotheses for proteins with no known homologs.

The study of the protein-protein interactions (PPIs) of unique ORFs is a strategy for deciphering the biological roles of unique ORFs of interest. For uniform reference, we define unique ORFs as those for which no matching protein is found after PDB-BLAST search with default parameters. The uniqueness of the ORFs generally precludes the straightforward use of structure-based approaches in the design of experiments to explore PPIs. Many open-source bioinformatics tools, from the commonly-used to the relatively esoteric, have been built and validated to perform analyses and/or predictions of sorts on proteins. How can these available tools be combined into a protocol that helps the non-expert bioinformaticist researcher to design experiments to explore the PPIs of their unique ORF? Here we define a pragmatic protocol based on accessibility of software to achieve this and we make it concrete by applying it on two proteins-the ImuB and ImuA' proteins from Mycobacterium tuberculosis. The protocol is pragmatic in that decisions are made largely based on the availability of easy-to-use freeware. We define the following basic and user-friendly software pathway to build testable PPI hypotheses for a query protein sequence: PSI-PRED → MUSTER → metaPPISP → ASAView and ConSurf. Where possible, other analytical and/or predictive tools may be included. Our protocol combines the software predictions and analyses with general bioinformatics principles to arrive at consensus, prioritised and testable PPI hypotheses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Structural Genomics: General Applications Classification of ligand molecules in PDB with graph match-based structural superposition HOMCOS: an updated server to search and model complex 3D structures. NLDB: a database for 3D protein-ligand interactions in enzymatic reactions. Toward the next step in G protein-coupled receptor research: a knowledge-driven analysis for the next potential targets in drug discovery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1