镉和镍在雌激素受体信号转导和乳腺癌中的作用:是否为金属雌激素?

Natalie B Aquino, Mary B Sevigny, Jackielyn Sabangan, Maggie C Louie
{"title":"镉和镍在雌激素受体信号转导和乳腺癌中的作用:是否为金属雌激素?","authors":"Natalie B Aquino, Mary B Sevigny, Jackielyn Sabangan, Maggie C Louie","doi":"10.1080/10590501.2012.705159","DOIUrl":null,"url":null,"abstract":"<p><p>During the past half-century, incidences of breast cancer have increased globally. Various factors--genetic and environmental--have been implicated in the initiation and progression of this disease. One potential environmental risk factor that has not received a lot of attention is the exposure to heavy metals. While several mechanisms have been put forth describing how high concentrations of heavy metals play a role in carcinogenesis, it is unclear whether chronic, low-level exposure to certain heavy metals (i.e., cadmium and nickel) can directly result in the development and progression of cancer. Cadmium and nickel have been hypothesized to play a role in breast cancer development by acting as metalloestrogens--metals that bind to estrogen receptors and mimic the actions of estrogen. Since the lifetime exposure to estrogen is a well-established risk factor for breast cancer, anything that mimics its activity will likely contribute to the etiology of the disease. However, heavy metals, depending on their concentration, are capable of binding to a variety of proteins and may exert their toxicities by disrupting multiple cellular functions, complicating the analysis of whether heavy metal-induced carcinogenesis is mediated by the estrogen receptor. The purpose of this review is to discuss the various epidemiological, in vivo, and in vitro studies that show a link between the heavy metals, cadmium and nickel, and breast cancer development. We will particularly focus on the studies that test whether these two metals act as metalloestrogens in order to assess the strength of the data supporting this hypothesis.</p>","PeriodicalId":51085,"journal":{"name":"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews","volume":"30 3","pages":"189-224"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3476837/pdf/nihms398311.pdf","citationCount":"0","resultStr":"{\"title\":\"The role of cadmium and nickel in estrogen receptor signaling and breast cancer: metalloestrogens or not?\",\"authors\":\"Natalie B Aquino, Mary B Sevigny, Jackielyn Sabangan, Maggie C Louie\",\"doi\":\"10.1080/10590501.2012.705159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>During the past half-century, incidences of breast cancer have increased globally. Various factors--genetic and environmental--have been implicated in the initiation and progression of this disease. One potential environmental risk factor that has not received a lot of attention is the exposure to heavy metals. While several mechanisms have been put forth describing how high concentrations of heavy metals play a role in carcinogenesis, it is unclear whether chronic, low-level exposure to certain heavy metals (i.e., cadmium and nickel) can directly result in the development and progression of cancer. Cadmium and nickel have been hypothesized to play a role in breast cancer development by acting as metalloestrogens--metals that bind to estrogen receptors and mimic the actions of estrogen. Since the lifetime exposure to estrogen is a well-established risk factor for breast cancer, anything that mimics its activity will likely contribute to the etiology of the disease. However, heavy metals, depending on their concentration, are capable of binding to a variety of proteins and may exert their toxicities by disrupting multiple cellular functions, complicating the analysis of whether heavy metal-induced carcinogenesis is mediated by the estrogen receptor. The purpose of this review is to discuss the various epidemiological, in vivo, and in vitro studies that show a link between the heavy metals, cadmium and nickel, and breast cancer development. We will particularly focus on the studies that test whether these two metals act as metalloestrogens in order to assess the strength of the data supporting this hypothesis.</p>\",\"PeriodicalId\":51085,\"journal\":{\"name\":\"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews\",\"volume\":\"30 3\",\"pages\":\"189-224\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3476837/pdf/nihms398311.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10590501.2012.705159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10590501.2012.705159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

在过去的半个世纪中,全球乳腺癌发病率不断上升。遗传和环境等各种因素都与乳腺癌的发生和发展有关。有一种潜在的环境风险因素尚未得到广泛关注,那就是重金属的暴露。虽然已经提出了几种机制来描述高浓度重金属如何在致癌过程中发挥作用,但目前还不清楚长期、低浓度接触某些重金属(如镉和镍)是否会直接导致癌症的发生和发展。镉和镍被假定为金属雌激素--能与雌激素受体结合并模拟雌激素作用的金属,从而在乳腺癌的发展中发挥作用。由于终生暴露于雌激素是乳腺癌的一个公认风险因素,任何能模拟雌激素活性的物质都有可能导致乳腺癌的发病。然而,重金属(取决于其浓度)能够与多种蛋白质结合,并可能通过破坏多种细胞功能来发挥其毒性,这就使得分析重金属诱导的致癌作用是否由雌激素受体介导变得更加复杂。本综述旨在讨论显示重金属镉和镍与乳腺癌发病之间存在联系的各种流行病学、体内和体外研究。我们将特别关注测试这两种金属是否为金属雌激素的研究,以评估支持这一假设的数据的强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The role of cadmium and nickel in estrogen receptor signaling and breast cancer: metalloestrogens or not?

During the past half-century, incidences of breast cancer have increased globally. Various factors--genetic and environmental--have been implicated in the initiation and progression of this disease. One potential environmental risk factor that has not received a lot of attention is the exposure to heavy metals. While several mechanisms have been put forth describing how high concentrations of heavy metals play a role in carcinogenesis, it is unclear whether chronic, low-level exposure to certain heavy metals (i.e., cadmium and nickel) can directly result in the development and progression of cancer. Cadmium and nickel have been hypothesized to play a role in breast cancer development by acting as metalloestrogens--metals that bind to estrogen receptors and mimic the actions of estrogen. Since the lifetime exposure to estrogen is a well-established risk factor for breast cancer, anything that mimics its activity will likely contribute to the etiology of the disease. However, heavy metals, depending on their concentration, are capable of binding to a variety of proteins and may exert their toxicities by disrupting multiple cellular functions, complicating the analysis of whether heavy metal-induced carcinogenesis is mediated by the estrogen receptor. The purpose of this review is to discuss the various epidemiological, in vivo, and in vitro studies that show a link between the heavy metals, cadmium and nickel, and breast cancer development. We will particularly focus on the studies that test whether these two metals act as metalloestrogens in order to assess the strength of the data supporting this hypothesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
0
审稿时长
>24 weeks
期刊介绍: Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews aims at rapid publication of reviews on important subjects in various areas of environmental toxicology, health and carcinogenesis. Among the subjects covered are risk assessments of chemicals including nanomaterials and physical agents of environmental significance, harmful organisms found in the environment and toxic agents they produce, and food and drugs as environmental factors. It includes basic research, methodology, host susceptibility, mechanistic studies, theoretical modeling, environmental and geotechnical engineering, and environmental protection. Submission to this journal is primarily on an invitational basis. All submissions should be made through the Editorial Manager site, and are subject to peer review by independent, anonymous expert referees. Please review the instructions for authors for manuscript submission guidance.
期刊最新文献
Polycyclic aromatic hydrocarbons as a potential source of carcinogenicity of mate. Enhanced generation of reactive oxygen species and photocatalytic activity by Pt-based metallic nanostructures: the composition matters. Intrinsic catalytic activity of rhodium nanoparticles with respect to reactive oxygen species scavenging: implication for diminishing cytotoxicity. Electrochemical detection and quantification of Reactive Red 195 dyes on graphene modified glassy carbon electrode. Regulation of cytochrome P450 expression by microRNAs and long noncoding RNAs: Epigenetic mechanisms in environmental toxicology and carcinogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1