{"title":"小鼠RhoA: gtp - γ s配合物在中心晶格中的晶体结构。","authors":"Chacko Jobichen, Kuntal Pal, Kunchithapadam Swaminathan","doi":"10.1007/s10969-012-9143-5","DOIUrl":null,"url":null,"abstract":"<p><p>RhoA, a member of the Rho sub-family of small GTPases, plays a significant signaling role in cell morphogenesis, migration, neuronal development, cell division and adhesion. So far, 4 structures of RhoA:GDP/GTP analogs and 14 structures of RhoA in complex with other proteins have been reported. All RhoA:GDP/GTP analog complexes have been crystallized in primitive lattices and RhoA is monomeric. This is the first time a RhoA:GTP analog complex has been crystallized as a dimer in a centered lattice. The present structure reveals structural differences in the switch-I (residues 28-42) and switch-II (residues 61-66) regions, which play important roles in interactions with downstream targets to transduce signals, when compared to the previously reported structures.</p>","PeriodicalId":73957,"journal":{"name":"Journal of structural and functional genomics","volume":"13 4","pages":"241-5"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10969-012-9143-5","citationCount":"8","resultStr":"{\"title\":\"Crystal structure of mouse RhoA:GTPγS complex in a centered lattice.\",\"authors\":\"Chacko Jobichen, Kuntal Pal, Kunchithapadam Swaminathan\",\"doi\":\"10.1007/s10969-012-9143-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>RhoA, a member of the Rho sub-family of small GTPases, plays a significant signaling role in cell morphogenesis, migration, neuronal development, cell division and adhesion. So far, 4 structures of RhoA:GDP/GTP analogs and 14 structures of RhoA in complex with other proteins have been reported. All RhoA:GDP/GTP analog complexes have been crystallized in primitive lattices and RhoA is monomeric. This is the first time a RhoA:GTP analog complex has been crystallized as a dimer in a centered lattice. The present structure reveals structural differences in the switch-I (residues 28-42) and switch-II (residues 61-66) regions, which play important roles in interactions with downstream targets to transduce signals, when compared to the previously reported structures.</p>\",\"PeriodicalId\":73957,\"journal\":{\"name\":\"Journal of structural and functional genomics\",\"volume\":\"13 4\",\"pages\":\"241-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10969-012-9143-5\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of structural and functional genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10969-012-9143-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/9/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of structural and functional genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10969-012-9143-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/9/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Crystal structure of mouse RhoA:GTPγS complex in a centered lattice.
RhoA, a member of the Rho sub-family of small GTPases, plays a significant signaling role in cell morphogenesis, migration, neuronal development, cell division and adhesion. So far, 4 structures of RhoA:GDP/GTP analogs and 14 structures of RhoA in complex with other proteins have been reported. All RhoA:GDP/GTP analog complexes have been crystallized in primitive lattices and RhoA is monomeric. This is the first time a RhoA:GTP analog complex has been crystallized as a dimer in a centered lattice. The present structure reveals structural differences in the switch-I (residues 28-42) and switch-II (residues 61-66) regions, which play important roles in interactions with downstream targets to transduce signals, when compared to the previously reported structures.