{"title":"控制日本梨自交不亲和强度的花粉因子。","authors":"Shin Hiratsuka, Makoto Fujimura, Taishi Hayashida, Yutaka Nishikawa, Kazuyoshi Nada","doi":"10.1007/s00497-012-0202-7","DOIUrl":null,"url":null,"abstract":"<p><p>Japanese pear has a genetically controlled self-incompatibility system, but both the pollen-tube growth in a semi in vivo assay and fruit set after self-pollination differ considerably among cultivars. The percentage of styles in which pollen tubes have reached the base ranges from 0 to 36 %, a value determined by culture of styles in vitro, and fruit set ranges from 0.6 to 15.2 %. Based on these data, we have assigned a value for the self-incompatibility weakness to each cultivar. Here, we showed that pollen factors control the degree of self-incompatibility. When the pollen-tube growth of 13 cultivars was compared in a completely compatible 'Hougetsu' (S (1) S (7)) style, it differed a fair amount among cultivars and showed a significantly positive relation to self-incompatibility weakness (r = 0.707). The degree of self-incompatibility of pear is, therefore, determined by pollen factor(s) unrelated to the S-locus. Although the fruit set and fruit growth of 'Hougetsu' were not affected by the pollen donor, a positive relationship was also observed between seed number and self-incompatibility weakness (r = 0.972). However, in a style with no S-RNase production (genotype: S (4) (sm) S (4) (sm) ), the relationship disappeared (r = 0.341) and pollen-tube growth was promoted by 12-36 % except in one cultivar. These results suggest that S-RNase functions as a cytotoxin on compatible pollen in a cultivar-dependent manner, and that the degree of inhibition is determined by pollen factor(s) unrelated to the S-locus. The pollen factor also functions on S-RNase in incompatible styles, resulting in a different degree of self-incompatibility.</p>","PeriodicalId":21770,"journal":{"name":"Sexual Plant Reproduction","volume":"25 4","pages":"347-52"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00497-012-0202-7","citationCount":"6","resultStr":"{\"title\":\"Pollen factors controlling self-incompatibility strength in Japanese pear.\",\"authors\":\"Shin Hiratsuka, Makoto Fujimura, Taishi Hayashida, Yutaka Nishikawa, Kazuyoshi Nada\",\"doi\":\"10.1007/s00497-012-0202-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Japanese pear has a genetically controlled self-incompatibility system, but both the pollen-tube growth in a semi in vivo assay and fruit set after self-pollination differ considerably among cultivars. The percentage of styles in which pollen tubes have reached the base ranges from 0 to 36 %, a value determined by culture of styles in vitro, and fruit set ranges from 0.6 to 15.2 %. Based on these data, we have assigned a value for the self-incompatibility weakness to each cultivar. Here, we showed that pollen factors control the degree of self-incompatibility. When the pollen-tube growth of 13 cultivars was compared in a completely compatible 'Hougetsu' (S (1) S (7)) style, it differed a fair amount among cultivars and showed a significantly positive relation to self-incompatibility weakness (r = 0.707). The degree of self-incompatibility of pear is, therefore, determined by pollen factor(s) unrelated to the S-locus. Although the fruit set and fruit growth of 'Hougetsu' were not affected by the pollen donor, a positive relationship was also observed between seed number and self-incompatibility weakness (r = 0.972). However, in a style with no S-RNase production (genotype: S (4) (sm) S (4) (sm) ), the relationship disappeared (r = 0.341) and pollen-tube growth was promoted by 12-36 % except in one cultivar. These results suggest that S-RNase functions as a cytotoxin on compatible pollen in a cultivar-dependent manner, and that the degree of inhibition is determined by pollen factor(s) unrelated to the S-locus. The pollen factor also functions on S-RNase in incompatible styles, resulting in a different degree of self-incompatibility.</p>\",\"PeriodicalId\":21770,\"journal\":{\"name\":\"Sexual Plant Reproduction\",\"volume\":\"25 4\",\"pages\":\"347-52\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s00497-012-0202-7\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sexual Plant Reproduction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00497-012-0202-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/11/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sexual Plant Reproduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00497-012-0202-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/11/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Pollen factors controlling self-incompatibility strength in Japanese pear.
Japanese pear has a genetically controlled self-incompatibility system, but both the pollen-tube growth in a semi in vivo assay and fruit set after self-pollination differ considerably among cultivars. The percentage of styles in which pollen tubes have reached the base ranges from 0 to 36 %, a value determined by culture of styles in vitro, and fruit set ranges from 0.6 to 15.2 %. Based on these data, we have assigned a value for the self-incompatibility weakness to each cultivar. Here, we showed that pollen factors control the degree of self-incompatibility. When the pollen-tube growth of 13 cultivars was compared in a completely compatible 'Hougetsu' (S (1) S (7)) style, it differed a fair amount among cultivars and showed a significantly positive relation to self-incompatibility weakness (r = 0.707). The degree of self-incompatibility of pear is, therefore, determined by pollen factor(s) unrelated to the S-locus. Although the fruit set and fruit growth of 'Hougetsu' were not affected by the pollen donor, a positive relationship was also observed between seed number and self-incompatibility weakness (r = 0.972). However, in a style with no S-RNase production (genotype: S (4) (sm) S (4) (sm) ), the relationship disappeared (r = 0.341) and pollen-tube growth was promoted by 12-36 % except in one cultivar. These results suggest that S-RNase functions as a cytotoxin on compatible pollen in a cultivar-dependent manner, and that the degree of inhibition is determined by pollen factor(s) unrelated to the S-locus. The pollen factor also functions on S-RNase in incompatible styles, resulting in a different degree of self-incompatibility.