Xiao-feng Zhou, Ding-ding Huang, Di-fen Wang, Jiang-quan Fu
{"title":"[异丙酚预处理对新生大鼠脑片谷氨酸损伤的保护作用]。","authors":"Xiao-feng Zhou, Ding-ding Huang, Di-fen Wang, Jiang-quan Fu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To study the protective effect of propofol precondition against glutamate (Glu) neurotoxicity to neonatal rat cerebrocortical slices.</p><p><strong>Methods: </strong>Brain slices of Sprague-Dawley (SD) rats were cultured in vitro and observed the morphologic changes. Brain slices were randomly divided into three groups: blank control group, Glu injury group (1 mmol/L Glu for 0.5 hour), propofol precondition group (20 mg/L propofol for 24 hours), each n=12. Changes in pathological and ultra-structure of cells were observed using microscope. Lactate dehydrogenase (LDH) leakage rate was measured. Meanwhile, the expression of glial fibrillary acidic protein (GFAP) was detected by immunohistochemical technology, then the positive cell were counted.</p><p><strong>Results: </strong>Cultured brain slices of cell were intact and survived well. Hematoxylin-eosin (HE) staining, electron microscopy and LDH test results showed that cerebral film neuron severely damage, gliosis, edema, LDH leakage rate in Glu injury group were significantly more severe compared with blank control group [(68.5±2.0)% vs. (16.0±2.5)%, P<0.01]. Reduce the brain slice of the propofol pretreatment group of neuronal cell jury, cell shape recovery significantly reduced LDH leakage rate compared with the Glu injury group [(38.5±2.4)% vs. (68.5±2.0)%, P<0.05]. Immunohistochemical detection of GFAP expression of Glu injury group glial cell body swelling, producing increase in the number of GFAP positive reaction strong, the number of positive cells compared with blank control group was significantly increased (50±5 cells/HP vs. 10±3 cells/HP, P<0.01). The recovery of propofol pretreatment group glial cell morphology, cell processes slender GFAP positive reaction decreased the number of positive cells compared with the Glu injury group was significantly decreased (30±4 cells/HP vs. 50±5 cells/HP, P<0.05).</p><p><strong>Conclusion: </strong>Propofol pretreatment has protective effect against Glu injured rat cerebrocortical slices.</p>","PeriodicalId":23992,"journal":{"name":"Zhongguo wei zhong bing ji jiu yi xue = Chinese critical care medicine = Zhongguo weizhongbing jijiuyixue","volume":"24 12","pages":"750-3"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[The protective effect of propofol pretreatment on glutamate injury of neonatal rat brain slices].\",\"authors\":\"Xiao-feng Zhou, Ding-ding Huang, Di-fen Wang, Jiang-quan Fu\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To study the protective effect of propofol precondition against glutamate (Glu) neurotoxicity to neonatal rat cerebrocortical slices.</p><p><strong>Methods: </strong>Brain slices of Sprague-Dawley (SD) rats were cultured in vitro and observed the morphologic changes. Brain slices were randomly divided into three groups: blank control group, Glu injury group (1 mmol/L Glu for 0.5 hour), propofol precondition group (20 mg/L propofol for 24 hours), each n=12. Changes in pathological and ultra-structure of cells were observed using microscope. Lactate dehydrogenase (LDH) leakage rate was measured. Meanwhile, the expression of glial fibrillary acidic protein (GFAP) was detected by immunohistochemical technology, then the positive cell were counted.</p><p><strong>Results: </strong>Cultured brain slices of cell were intact and survived well. Hematoxylin-eosin (HE) staining, electron microscopy and LDH test results showed that cerebral film neuron severely damage, gliosis, edema, LDH leakage rate in Glu injury group were significantly more severe compared with blank control group [(68.5±2.0)% vs. (16.0±2.5)%, P<0.01]. Reduce the brain slice of the propofol pretreatment group of neuronal cell jury, cell shape recovery significantly reduced LDH leakage rate compared with the Glu injury group [(38.5±2.4)% vs. (68.5±2.0)%, P<0.05]. Immunohistochemical detection of GFAP expression of Glu injury group glial cell body swelling, producing increase in the number of GFAP positive reaction strong, the number of positive cells compared with blank control group was significantly increased (50±5 cells/HP vs. 10±3 cells/HP, P<0.01). The recovery of propofol pretreatment group glial cell morphology, cell processes slender GFAP positive reaction decreased the number of positive cells compared with the Glu injury group was significantly decreased (30±4 cells/HP vs. 50±5 cells/HP, P<0.05).</p><p><strong>Conclusion: </strong>Propofol pretreatment has protective effect against Glu injured rat cerebrocortical slices.</p>\",\"PeriodicalId\":23992,\"journal\":{\"name\":\"Zhongguo wei zhong bing ji jiu yi xue = Chinese critical care medicine = Zhongguo weizhongbing jijiuyixue\",\"volume\":\"24 12\",\"pages\":\"750-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zhongguo wei zhong bing ji jiu yi xue = Chinese critical care medicine = Zhongguo weizhongbing jijiuyixue\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhongguo wei zhong bing ji jiu yi xue = Chinese critical care medicine = Zhongguo weizhongbing jijiuyixue","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
[The protective effect of propofol pretreatment on glutamate injury of neonatal rat brain slices].
Objective: To study the protective effect of propofol precondition against glutamate (Glu) neurotoxicity to neonatal rat cerebrocortical slices.
Methods: Brain slices of Sprague-Dawley (SD) rats were cultured in vitro and observed the morphologic changes. Brain slices were randomly divided into three groups: blank control group, Glu injury group (1 mmol/L Glu for 0.5 hour), propofol precondition group (20 mg/L propofol for 24 hours), each n=12. Changes in pathological and ultra-structure of cells were observed using microscope. Lactate dehydrogenase (LDH) leakage rate was measured. Meanwhile, the expression of glial fibrillary acidic protein (GFAP) was detected by immunohistochemical technology, then the positive cell were counted.
Results: Cultured brain slices of cell were intact and survived well. Hematoxylin-eosin (HE) staining, electron microscopy and LDH test results showed that cerebral film neuron severely damage, gliosis, edema, LDH leakage rate in Glu injury group were significantly more severe compared with blank control group [(68.5±2.0)% vs. (16.0±2.5)%, P<0.01]. Reduce the brain slice of the propofol pretreatment group of neuronal cell jury, cell shape recovery significantly reduced LDH leakage rate compared with the Glu injury group [(38.5±2.4)% vs. (68.5±2.0)%, P<0.05]. Immunohistochemical detection of GFAP expression of Glu injury group glial cell body swelling, producing increase in the number of GFAP positive reaction strong, the number of positive cells compared with blank control group was significantly increased (50±5 cells/HP vs. 10±3 cells/HP, P<0.01). The recovery of propofol pretreatment group glial cell morphology, cell processes slender GFAP positive reaction decreased the number of positive cells compared with the Glu injury group was significantly decreased (30±4 cells/HP vs. 50±5 cells/HP, P<0.05).
Conclusion: Propofol pretreatment has protective effect against Glu injured rat cerebrocortical slices.