纵向二元特征函数映射的最大似然方法。

Pub Date : 2012-11-22 DOI:10.1515/1544-6115.1675
Chenguang Wang, Hongying Li, Zhong Wang, Yaqun Wang, Ningtao Wang, Zuoheng Wang, Rongling Wu
{"title":"纵向二元特征函数映射的最大似然方法。","authors":"Chenguang Wang,&nbsp;Hongying Li,&nbsp;Zhong Wang,&nbsp;Yaqun Wang,&nbsp;Ningtao Wang,&nbsp;Zuoheng Wang,&nbsp;Rongling Wu","doi":"10.1515/1544-6115.1675","DOIUrl":null,"url":null,"abstract":"<p><p>Despite their importance in biology and biomedicine, genetic mapping of binary traits that change over time has not been well explored. In this article, we develop a statistical model for mapping quantitative trait loci (QTLs) that govern longitudinal responses of binary traits. The model is constructed within the maximum likelihood framework by which the association between binary responses is modeled in terms of conditional log odds-ratios. With this parameterization, the maximum likelihood estimates (MLEs) of marginal mean parameters are robust to the misspecification of time dependence. We implement an iterative procedures to obtain the MLEs of QTL genotype-specific parameters that define longitudinal binary responses. The usefulness of the model was validated by analyzing a real example in rice. Simulation studies were performed to investigate the statistical properties of the model, showing that the model has power to identify and map specific QTLs responsible for the temporal pattern of binary traits.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2012-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/1544-6115.1675","citationCount":"0","resultStr":"{\"title\":\"A maximum likelihood approach to functional mapping of longitudinal binary traits.\",\"authors\":\"Chenguang Wang,&nbsp;Hongying Li,&nbsp;Zhong Wang,&nbsp;Yaqun Wang,&nbsp;Ningtao Wang,&nbsp;Zuoheng Wang,&nbsp;Rongling Wu\",\"doi\":\"10.1515/1544-6115.1675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite their importance in biology and biomedicine, genetic mapping of binary traits that change over time has not been well explored. In this article, we develop a statistical model for mapping quantitative trait loci (QTLs) that govern longitudinal responses of binary traits. The model is constructed within the maximum likelihood framework by which the association between binary responses is modeled in terms of conditional log odds-ratios. With this parameterization, the maximum likelihood estimates (MLEs) of marginal mean parameters are robust to the misspecification of time dependence. We implement an iterative procedures to obtain the MLEs of QTL genotype-specific parameters that define longitudinal binary responses. The usefulness of the model was validated by analyzing a real example in rice. Simulation studies were performed to investigate the statistical properties of the model, showing that the model has power to identify and map specific QTLs responsible for the temporal pattern of binary traits.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2012-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/1544-6115.1675\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/1544-6115.1675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/1544-6115.1675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管它们在生物学和生物医学中很重要,但随时间变化的二元性状的遗传作图尚未得到很好的探索。在本文中,我们建立了一个统计模型来绘制控制二元性状纵向响应的数量性状位点(qtl)。该模型是在最大似然框架内构建的,通过该框架,二元响应之间的关联以条件对数比的形式建模。通过这种参数化,边际均值参数的最大似然估计(MLEs)对时间依赖性的错误规范具有鲁棒性。我们实施了一个迭代程序,以获得定义纵向二元响应的QTL基因型特异性参数的最小方差。通过对水稻生产实例的分析,验证了该模型的有效性。通过仿真研究,验证了该模型的统计特性,结果表明该模型具有识别和绘制与二元性状时间模式相关的特定qtl的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
A maximum likelihood approach to functional mapping of longitudinal binary traits.

Despite their importance in biology and biomedicine, genetic mapping of binary traits that change over time has not been well explored. In this article, we develop a statistical model for mapping quantitative trait loci (QTLs) that govern longitudinal responses of binary traits. The model is constructed within the maximum likelihood framework by which the association between binary responses is modeled in terms of conditional log odds-ratios. With this parameterization, the maximum likelihood estimates (MLEs) of marginal mean parameters are robust to the misspecification of time dependence. We implement an iterative procedures to obtain the MLEs of QTL genotype-specific parameters that define longitudinal binary responses. The usefulness of the model was validated by analyzing a real example in rice. Simulation studies were performed to investigate the statistical properties of the model, showing that the model has power to identify and map specific QTLs responsible for the temporal pattern of binary traits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1