环氧化酶和前列腺素在癌症中的作用。

Jong-Woo Kim
{"title":"环氧化酶和前列腺素在癌症中的作用。","authors":"Jong-Woo Kim","doi":"10.3393/jksc.2012.28.5.226","DOIUrl":null,"url":null,"abstract":"See Article on Page 253-258 \n \nInflammation, especially longstanding abnormal inflammation, seems to contribute to neoplastic transformation to some extent. We cannot help thinking of cyclooxygenase (Cox) and prostaglandin (PG) whenever we mention it. Three isoenzymes of Cox have been identified so far: Cox-1, Cox-2, and Cox-3, but Cox-3, recently identified, is a variant of Cox-1 and is also called Cox-1v. It is formed from a frame shift of the original Cox-1 gene, but it seems not to play usual Cox physiologic roles as in inflammation and fever, and it is still being studied [1, 2]. Although Cox-1 and Cox-2 enzymes basically work in the same way, they are expressed in different ways and at different levels in various organs and tissues. That is the reason side effects are different from selective inhibition against each enzyme. Cox-1, as a constitutional enzyme, is expressed from most cells in homeostatic processes and is inhibited in feedback. On the other hand, Cox-2 is mostly an enzyme that is induced under certain conditions such as inflammation or neoplastic process, but is rarely inhibited. Therefore, Cox-2 selective inhibitors effectively play their roles, especially at inflammatory sites, and do not damage the mucosa protection of gastric tissue without prohibiting the secretion of Cox-1, which is easily blocked by nonsteroidal antiinflammatory drugs (NSAIDs) in general. However, the selectivity of Cox-2 inhibitors does not seem to relieve other side effects of NSAIDs. Recently, increased risks of heart attack, cerebral stroke and renal failure have been reported with Cox-2 selective inhibitors, which seems to result from the reduced level of prostacyclin caused by Cox-2 inhibition. Prostacyclin has an important role in preventing platelets aggregation and blood clotting [3, 4]. \n \nAs we know, Cox converts arachidonic acid in the cell membrane to prostaglandin H2, the precursor of the final series-2 prostanoids such as PGE2, PGD2, PGF2, PGI2, and thromboxane A2. PGE2, one of the final products, is well known for its activities, such as softening the cervix, uterine contraction, inducing abortion, etc., in obstetric field [5]. However, the important thing is that PGE2 has recently been shown to have a strong relation with tumorigenesis in that it increases cell proliferation, angiogenesis and metastatic potential, and inhibits apoptosis and cellular immunity, which seem to be due to the increased expression of PGE2 by Cox-2 because excessive levels of PGE2 and Cox-2 are implicated in mediating several kinds of malignancies. However, we must also consider the Cox-2 activity in tumor tissue on its own without mediating prostaglandins. It can behave directly for tumorigenesis with activities similar to those mentioned above. For example, Cox-2 directly increases the intranuclear nuclear factor-κB, which is the main stimulus for gene activation and replication, and forms endogenous mutagen, malondialdehyde, from arachidonic acid, which can cause a mutation of p53, and stimulates vascular endothelial growth factor for angiogenesis [6, 7]. \n \n15-hydroxyprostaglandin dehydrogenase (15-PGDH) is supposed to degrade PGE2 selectively, and decreased expression of 15-PGDH might also be related with cancer as previously reported [8, 9]. As the author has mentioned, selective PGE2 inhibitors would work for the prevention or treatment of cancer if it developed. However, considering the direct effects of Cox-2 on carcinogenesis, cancer is unfortunately not that simple to get over. Therefore, selective PGE2 inhibitors will continue to be just one of many ordinary agents, but one that has a slight benefit in treating cancer. However numerous, these sorts of studies should form a basis for the future conquest of cancer.","PeriodicalId":17346,"journal":{"name":"Journal of the Korean Society of Coloproctology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/fc/13/jksc-28-226.PMC3499421.pdf","citationCount":"0","resultStr":"{\"title\":\"Cyclooxygenase and prostaglandin in cancer.\",\"authors\":\"Jong-Woo Kim\",\"doi\":\"10.3393/jksc.2012.28.5.226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"See Article on Page 253-258 \\n \\nInflammation, especially longstanding abnormal inflammation, seems to contribute to neoplastic transformation to some extent. We cannot help thinking of cyclooxygenase (Cox) and prostaglandin (PG) whenever we mention it. Three isoenzymes of Cox have been identified so far: Cox-1, Cox-2, and Cox-3, but Cox-3, recently identified, is a variant of Cox-1 and is also called Cox-1v. It is formed from a frame shift of the original Cox-1 gene, but it seems not to play usual Cox physiologic roles as in inflammation and fever, and it is still being studied [1, 2]. Although Cox-1 and Cox-2 enzymes basically work in the same way, they are expressed in different ways and at different levels in various organs and tissues. That is the reason side effects are different from selective inhibition against each enzyme. Cox-1, as a constitutional enzyme, is expressed from most cells in homeostatic processes and is inhibited in feedback. On the other hand, Cox-2 is mostly an enzyme that is induced under certain conditions such as inflammation or neoplastic process, but is rarely inhibited. Therefore, Cox-2 selective inhibitors effectively play their roles, especially at inflammatory sites, and do not damage the mucosa protection of gastric tissue without prohibiting the secretion of Cox-1, which is easily blocked by nonsteroidal antiinflammatory drugs (NSAIDs) in general. However, the selectivity of Cox-2 inhibitors does not seem to relieve other side effects of NSAIDs. Recently, increased risks of heart attack, cerebral stroke and renal failure have been reported with Cox-2 selective inhibitors, which seems to result from the reduced level of prostacyclin caused by Cox-2 inhibition. Prostacyclin has an important role in preventing platelets aggregation and blood clotting [3, 4]. \\n \\nAs we know, Cox converts arachidonic acid in the cell membrane to prostaglandin H2, the precursor of the final series-2 prostanoids such as PGE2, PGD2, PGF2, PGI2, and thromboxane A2. PGE2, one of the final products, is well known for its activities, such as softening the cervix, uterine contraction, inducing abortion, etc., in obstetric field [5]. However, the important thing is that PGE2 has recently been shown to have a strong relation with tumorigenesis in that it increases cell proliferation, angiogenesis and metastatic potential, and inhibits apoptosis and cellular immunity, which seem to be due to the increased expression of PGE2 by Cox-2 because excessive levels of PGE2 and Cox-2 are implicated in mediating several kinds of malignancies. However, we must also consider the Cox-2 activity in tumor tissue on its own without mediating prostaglandins. It can behave directly for tumorigenesis with activities similar to those mentioned above. For example, Cox-2 directly increases the intranuclear nuclear factor-κB, which is the main stimulus for gene activation and replication, and forms endogenous mutagen, malondialdehyde, from arachidonic acid, which can cause a mutation of p53, and stimulates vascular endothelial growth factor for angiogenesis [6, 7]. \\n \\n15-hydroxyprostaglandin dehydrogenase (15-PGDH) is supposed to degrade PGE2 selectively, and decreased expression of 15-PGDH might also be related with cancer as previously reported [8, 9]. As the author has mentioned, selective PGE2 inhibitors would work for the prevention or treatment of cancer if it developed. However, considering the direct effects of Cox-2 on carcinogenesis, cancer is unfortunately not that simple to get over. Therefore, selective PGE2 inhibitors will continue to be just one of many ordinary agents, but one that has a slight benefit in treating cancer. However numerous, these sorts of studies should form a basis for the future conquest of cancer.\",\"PeriodicalId\":17346,\"journal\":{\"name\":\"Journal of the Korean Society of Coloproctology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/fc/13/jksc-28-226.PMC3499421.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Society of Coloproctology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3393/jksc.2012.28.5.226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/10/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society of Coloproctology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3393/jksc.2012.28.5.226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/10/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cyclooxygenase and prostaglandin in cancer.
See Article on Page 253-258 Inflammation, especially longstanding abnormal inflammation, seems to contribute to neoplastic transformation to some extent. We cannot help thinking of cyclooxygenase (Cox) and prostaglandin (PG) whenever we mention it. Three isoenzymes of Cox have been identified so far: Cox-1, Cox-2, and Cox-3, but Cox-3, recently identified, is a variant of Cox-1 and is also called Cox-1v. It is formed from a frame shift of the original Cox-1 gene, but it seems not to play usual Cox physiologic roles as in inflammation and fever, and it is still being studied [1, 2]. Although Cox-1 and Cox-2 enzymes basically work in the same way, they are expressed in different ways and at different levels in various organs and tissues. That is the reason side effects are different from selective inhibition against each enzyme. Cox-1, as a constitutional enzyme, is expressed from most cells in homeostatic processes and is inhibited in feedback. On the other hand, Cox-2 is mostly an enzyme that is induced under certain conditions such as inflammation or neoplastic process, but is rarely inhibited. Therefore, Cox-2 selective inhibitors effectively play their roles, especially at inflammatory sites, and do not damage the mucosa protection of gastric tissue without prohibiting the secretion of Cox-1, which is easily blocked by nonsteroidal antiinflammatory drugs (NSAIDs) in general. However, the selectivity of Cox-2 inhibitors does not seem to relieve other side effects of NSAIDs. Recently, increased risks of heart attack, cerebral stroke and renal failure have been reported with Cox-2 selective inhibitors, which seems to result from the reduced level of prostacyclin caused by Cox-2 inhibition. Prostacyclin has an important role in preventing platelets aggregation and blood clotting [3, 4]. As we know, Cox converts arachidonic acid in the cell membrane to prostaglandin H2, the precursor of the final series-2 prostanoids such as PGE2, PGD2, PGF2, PGI2, and thromboxane A2. PGE2, one of the final products, is well known for its activities, such as softening the cervix, uterine contraction, inducing abortion, etc., in obstetric field [5]. However, the important thing is that PGE2 has recently been shown to have a strong relation with tumorigenesis in that it increases cell proliferation, angiogenesis and metastatic potential, and inhibits apoptosis and cellular immunity, which seem to be due to the increased expression of PGE2 by Cox-2 because excessive levels of PGE2 and Cox-2 are implicated in mediating several kinds of malignancies. However, we must also consider the Cox-2 activity in tumor tissue on its own without mediating prostaglandins. It can behave directly for tumorigenesis with activities similar to those mentioned above. For example, Cox-2 directly increases the intranuclear nuclear factor-κB, which is the main stimulus for gene activation and replication, and forms endogenous mutagen, malondialdehyde, from arachidonic acid, which can cause a mutation of p53, and stimulates vascular endothelial growth factor for angiogenesis [6, 7]. 15-hydroxyprostaglandin dehydrogenase (15-PGDH) is supposed to degrade PGE2 selectively, and decreased expression of 15-PGDH might also be related with cancer as previously reported [8, 9]. As the author has mentioned, selective PGE2 inhibitors would work for the prevention or treatment of cancer if it developed. However, considering the direct effects of Cox-2 on carcinogenesis, cancer is unfortunately not that simple to get over. Therefore, selective PGE2 inhibitors will continue to be just one of many ordinary agents, but one that has a slight benefit in treating cancer. However numerous, these sorts of studies should form a basis for the future conquest of cancer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Single-incision laparoscopic appendectomy. Finding a new prognostic biomarker for metastatic colorectal cancer. Pelvic exenteration: surgical approaches. Association of immune status with recurrent anal condylomata in human immunodeficiency virus-positive patients. Analysis of risk factors for the development of incisional and parastomal hernias in patients after colorectal surgery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1