Claire Drullion, Valérie Lagarde, Romain Gioia, Patrick Legembre, Muriel Priault, Bruno Cardinaud, Eric Lippert, François-Xavier Mahon, Jean-Max Pasquet
{"title":"霉酚酸通过细胞凋亡或衰老样细胞周期阻滞克服慢性髓系白血病细胞对伊马替尼和尼洛替尼的耐药。","authors":"Claire Drullion, Valérie Lagarde, Romain Gioia, Patrick Legembre, Muriel Priault, Bruno Cardinaud, Eric Lippert, François-Xavier Mahon, Jean-Max Pasquet","doi":"10.1155/2012/861301","DOIUrl":null,"url":null,"abstract":"<p><p>We used K562 cells sensitive or generated resistant to imatinib or nilotinib to investigate their response to mycophenolic acid (MPA). MPA induced DNA damage leading to cell death with a minor contribution of apoptosis, as revealed by annexin V labeling (up to 25%). In contrast, cell cycle arrest and positive staining for senescence-associated β-galactosidase activity were detected for a large cell population (80%). MPA-induced cell death was potentialized by the inhibition of autophagy and this is associated to the upregulation of apoptosis. In contrast, senescence was neither decreased nor abrogated in autophagy deficient K562 cells. Primary CD34 cells from CML patients sensitive or resistant to imatinib or nilotinib respond to MPA although apoptosis is mainly detected. These results show that MPA is an interesting tool to overcome resistance in vitro and in vivo mainly in the evolved phase of the disease.</p>","PeriodicalId":18102,"journal":{"name":"Leukemia Research and Treatment","volume":"2012 ","pages":"861301"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/861301","citationCount":"17","resultStr":"{\"title\":\"Mycophenolic Acid overcomes imatinib and nilotinib resistance of chronic myeloid leukemia cells by apoptosis or a senescent-like cell cycle arrest.\",\"authors\":\"Claire Drullion, Valérie Lagarde, Romain Gioia, Patrick Legembre, Muriel Priault, Bruno Cardinaud, Eric Lippert, François-Xavier Mahon, Jean-Max Pasquet\",\"doi\":\"10.1155/2012/861301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We used K562 cells sensitive or generated resistant to imatinib or nilotinib to investigate their response to mycophenolic acid (MPA). MPA induced DNA damage leading to cell death with a minor contribution of apoptosis, as revealed by annexin V labeling (up to 25%). In contrast, cell cycle arrest and positive staining for senescence-associated β-galactosidase activity were detected for a large cell population (80%). MPA-induced cell death was potentialized by the inhibition of autophagy and this is associated to the upregulation of apoptosis. In contrast, senescence was neither decreased nor abrogated in autophagy deficient K562 cells. Primary CD34 cells from CML patients sensitive or resistant to imatinib or nilotinib respond to MPA although apoptosis is mainly detected. These results show that MPA is an interesting tool to overcome resistance in vitro and in vivo mainly in the evolved phase of the disease.</p>\",\"PeriodicalId\":18102,\"journal\":{\"name\":\"Leukemia Research and Treatment\",\"volume\":\"2012 \",\"pages\":\"861301\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2012/861301\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Leukemia Research and Treatment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2012/861301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/2/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leukemia Research and Treatment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/861301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/2/23 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Mycophenolic Acid overcomes imatinib and nilotinib resistance of chronic myeloid leukemia cells by apoptosis or a senescent-like cell cycle arrest.
We used K562 cells sensitive or generated resistant to imatinib or nilotinib to investigate their response to mycophenolic acid (MPA). MPA induced DNA damage leading to cell death with a minor contribution of apoptosis, as revealed by annexin V labeling (up to 25%). In contrast, cell cycle arrest and positive staining for senescence-associated β-galactosidase activity were detected for a large cell population (80%). MPA-induced cell death was potentialized by the inhibition of autophagy and this is associated to the upregulation of apoptosis. In contrast, senescence was neither decreased nor abrogated in autophagy deficient K562 cells. Primary CD34 cells from CML patients sensitive or resistant to imatinib or nilotinib respond to MPA although apoptosis is mainly detected. These results show that MPA is an interesting tool to overcome resistance in vitro and in vivo mainly in the evolved phase of the disease.