Laura Gabriela Sánchez-Lozada, Miguel A Lanaspa, Magdalena Cristóbal-García, Fernando García-Arroyo, Virgilia Soto, David Cruz-Robles, Takahiko Nakagawa, Min A Yu, Duk-Hee Kang, Richard J Johnson
{"title":"尿酸诱导的内皮功能障碍与线粒体改变和细胞内ATP浓度降低有关。","authors":"Laura Gabriela Sánchez-Lozada, Miguel A Lanaspa, Magdalena Cristóbal-García, Fernando García-Arroyo, Virgilia Soto, David Cruz-Robles, Takahiko Nakagawa, Min A Yu, Duk-Hee Kang, Richard J Johnson","doi":"10.1159/000345509","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aims: </strong>Endothelial dysfunction is associated with mitochondrial alterations. We hypothesized that uric acid (UA), which can induce endothelial dysfunction in vitro and in vivo, might also alter mitochondrial function.</p><p><strong>Methods: </strong>Human aortic endothelial cells were exposed to soluble UA and measurements of oxidative stress, nitric oxide, mitochondrial density, ATP production, aconitase-2 and enoyl Co-A hydratase-1 expressions, and aconitase-2 activity in isolated mitochondria were determined. The effect of hyperuricemia induced by uricase inhibition in rats on renal mitochondrial integrity was also assessed.</p><p><strong>Results: </strong>UA-induced endothelial dysfunction was associated with reduced mitochondrial mass and ATP production. UA also decreased aconitase-2 activity and lowered enoyl CoA hydratase-1 expression. Hyperuricemic rats showed increased mitDNA damage in association with higher levels of intrarenal UA and oxidative stress.</p><p><strong>Conclusions: </strong>UA-induced endothelial dysfunction is associated with mitochondrial alterations and decreased intracellular ATP. These studies provide additional evidence for a deleterious effect of UA on vascular function that could be important in the pathogenesis of hypertension and vascular disease.</p>","PeriodicalId":18993,"journal":{"name":"Nephron Experimental Nephrology","volume":"121 3-4","pages":"e71-8"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000345509","citationCount":"242","resultStr":"{\"title\":\"Uric acid-induced endothelial dysfunction is associated with mitochondrial alterations and decreased intracellular ATP concentrations.\",\"authors\":\"Laura Gabriela Sánchez-Lozada, Miguel A Lanaspa, Magdalena Cristóbal-García, Fernando García-Arroyo, Virgilia Soto, David Cruz-Robles, Takahiko Nakagawa, Min A Yu, Duk-Hee Kang, Richard J Johnson\",\"doi\":\"10.1159/000345509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background/aims: </strong>Endothelial dysfunction is associated with mitochondrial alterations. We hypothesized that uric acid (UA), which can induce endothelial dysfunction in vitro and in vivo, might also alter mitochondrial function.</p><p><strong>Methods: </strong>Human aortic endothelial cells were exposed to soluble UA and measurements of oxidative stress, nitric oxide, mitochondrial density, ATP production, aconitase-2 and enoyl Co-A hydratase-1 expressions, and aconitase-2 activity in isolated mitochondria were determined. The effect of hyperuricemia induced by uricase inhibition in rats on renal mitochondrial integrity was also assessed.</p><p><strong>Results: </strong>UA-induced endothelial dysfunction was associated with reduced mitochondrial mass and ATP production. UA also decreased aconitase-2 activity and lowered enoyl CoA hydratase-1 expression. Hyperuricemic rats showed increased mitDNA damage in association with higher levels of intrarenal UA and oxidative stress.</p><p><strong>Conclusions: </strong>UA-induced endothelial dysfunction is associated with mitochondrial alterations and decreased intracellular ATP. These studies provide additional evidence for a deleterious effect of UA on vascular function that could be important in the pathogenesis of hypertension and vascular disease.</p>\",\"PeriodicalId\":18993,\"journal\":{\"name\":\"Nephron Experimental Nephrology\",\"volume\":\"121 3-4\",\"pages\":\"e71-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000345509\",\"citationCount\":\"242\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nephron Experimental Nephrology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000345509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/12/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nephron Experimental Nephrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000345509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/12/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Uric acid-induced endothelial dysfunction is associated with mitochondrial alterations and decreased intracellular ATP concentrations.
Background/aims: Endothelial dysfunction is associated with mitochondrial alterations. We hypothesized that uric acid (UA), which can induce endothelial dysfunction in vitro and in vivo, might also alter mitochondrial function.
Methods: Human aortic endothelial cells were exposed to soluble UA and measurements of oxidative stress, nitric oxide, mitochondrial density, ATP production, aconitase-2 and enoyl Co-A hydratase-1 expressions, and aconitase-2 activity in isolated mitochondria were determined. The effect of hyperuricemia induced by uricase inhibition in rats on renal mitochondrial integrity was also assessed.
Results: UA-induced endothelial dysfunction was associated with reduced mitochondrial mass and ATP production. UA also decreased aconitase-2 activity and lowered enoyl CoA hydratase-1 expression. Hyperuricemic rats showed increased mitDNA damage in association with higher levels of intrarenal UA and oxidative stress.
Conclusions: UA-induced endothelial dysfunction is associated with mitochondrial alterations and decreased intracellular ATP. These studies provide additional evidence for a deleterious effect of UA on vascular function that could be important in the pathogenesis of hypertension and vascular disease.