{"title":"原发性骨髓纤维化和“坏土里的坏种子”概念。","authors":"Marie-Caroline Le Bousse-Kerdilès","doi":"10.1186/1755-1536-5-S1-S20","DOIUrl":null,"url":null,"abstract":"<p><p>Primary Myelofibrosis (PMF) is a chronic myeloproliferative neoplasm characterized by a clonal myeloproliferation and a myelofibrosis. The concomitant presence of neoangiogenesis and osteosclerosis suggests a deregulation of medullar stem cell niches in which hematopoietic stem cells are engaged in a constant crosstalk with their stromal environment. Despite the recently discovered mutations including the JAK2(Val617F) mutation, the primitive molecular event responsible for the clonal hematopoietic proliferation is still unknown. We propose that the \"specificity\" of the pathological process that caracterizes PMF results from alterations in the cross talk between hematopoietic and stromal cells. These alterations contribute in creating a abnormal microenvironment that participates in the maintenance of the neoplasic clone leading to a misbalance disfavouring normal hematopoiesis; in return or simultaneously, stromal cells constituting the niches are modulated by hematopoietic cells resulting in stroma dysfunctions. Therefore, PMF is a remarkable \"model\" in which deregulation of the stem cell niche is of utmost importance for the disease development. A better understanding of the crosstalk between stem cells and their niches should imply new therapeutic strategies targeting not only intrinsic defects in stem cells but also regulatory niche-derived signals and, consequently, hematopoietic cell proliferation. </p>","PeriodicalId":12264,"journal":{"name":"Fibrogenesis & Tissue Repair","volume":"5 Suppl 1","pages":"S20"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1755-1536-5-S1-S20","citationCount":"31","resultStr":"{\"title\":\"Primary myelofibrosis and the \\\"bad seeds in bad soil\\\" concept.\",\"authors\":\"Marie-Caroline Le Bousse-Kerdilès\",\"doi\":\"10.1186/1755-1536-5-S1-S20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Primary Myelofibrosis (PMF) is a chronic myeloproliferative neoplasm characterized by a clonal myeloproliferation and a myelofibrosis. The concomitant presence of neoangiogenesis and osteosclerosis suggests a deregulation of medullar stem cell niches in which hematopoietic stem cells are engaged in a constant crosstalk with their stromal environment. Despite the recently discovered mutations including the JAK2(Val617F) mutation, the primitive molecular event responsible for the clonal hematopoietic proliferation is still unknown. We propose that the \\\"specificity\\\" of the pathological process that caracterizes PMF results from alterations in the cross talk between hematopoietic and stromal cells. These alterations contribute in creating a abnormal microenvironment that participates in the maintenance of the neoplasic clone leading to a misbalance disfavouring normal hematopoiesis; in return or simultaneously, stromal cells constituting the niches are modulated by hematopoietic cells resulting in stroma dysfunctions. Therefore, PMF is a remarkable \\\"model\\\" in which deregulation of the stem cell niche is of utmost importance for the disease development. A better understanding of the crosstalk between stem cells and their niches should imply new therapeutic strategies targeting not only intrinsic defects in stem cells but also regulatory niche-derived signals and, consequently, hematopoietic cell proliferation. </p>\",\"PeriodicalId\":12264,\"journal\":{\"name\":\"Fibrogenesis & Tissue Repair\",\"volume\":\"5 Suppl 1\",\"pages\":\"S20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/1755-1536-5-S1-S20\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fibrogenesis & Tissue Repair\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/1755-1536-5-S1-S20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibrogenesis & Tissue Repair","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1755-1536-5-S1-S20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Primary myelofibrosis and the "bad seeds in bad soil" concept.
Primary Myelofibrosis (PMF) is a chronic myeloproliferative neoplasm characterized by a clonal myeloproliferation and a myelofibrosis. The concomitant presence of neoangiogenesis and osteosclerosis suggests a deregulation of medullar stem cell niches in which hematopoietic stem cells are engaged in a constant crosstalk with their stromal environment. Despite the recently discovered mutations including the JAK2(Val617F) mutation, the primitive molecular event responsible for the clonal hematopoietic proliferation is still unknown. We propose that the "specificity" of the pathological process that caracterizes PMF results from alterations in the cross talk between hematopoietic and stromal cells. These alterations contribute in creating a abnormal microenvironment that participates in the maintenance of the neoplasic clone leading to a misbalance disfavouring normal hematopoiesis; in return or simultaneously, stromal cells constituting the niches are modulated by hematopoietic cells resulting in stroma dysfunctions. Therefore, PMF is a remarkable "model" in which deregulation of the stem cell niche is of utmost importance for the disease development. A better understanding of the crosstalk between stem cells and their niches should imply new therapeutic strategies targeting not only intrinsic defects in stem cells but also regulatory niche-derived signals and, consequently, hematopoietic cell proliferation.