Vinod Kumar, Gopal Singh, A K Verma, Sanjeev Agrawal
{"title":"组氨酸植酸酶序列的硅学特征。","authors":"Vinod Kumar, Gopal Singh, A K Verma, Sanjeev Agrawal","doi":"10.1155/2012/845465","DOIUrl":null,"url":null,"abstract":"<p><p>Histidine acid phytases (HAPhy) are widely distributed enzymes among bacteria, fungi, plants, and some animal tissues. They have a significant role as an animal feed enzyme and in the solubilization of insoluble phosphates and minerals present in the form of phytic acid complex. A set of 50 reference protein sequences representing HAPhy were retrieved from NCBI protein database and characterized for various biochemical properties, multiple sequence alignment (MSA), homology search, phylogenetic analysis, motifs, and superfamily search. MSA using MEGA5 revealed the presence of conserved sequences at N-terminal \"RHGXRXP\" and C-terminal \"HD.\" Phylogenetic tree analysis indicates the presence of three clusters representing different HAPhy, that is, PhyA, PhyB, and AppA. Analysis of 10 commonly distributed motifs in the sequences indicates the presence of signature sequence for each class. Motif 1 \"SPFCDLFTHEEWIQYDYLQSLGKYYGYGAGNPLGPAQGIGF\" was present in 38 protein sequences representing clusters 1 (PhyA) and 2 (PhyB). Cluster 3 (AppA) contains motif 9 \"KKGCPQSGQVAIIADVDERTRKTGEAFAAGLAPDCAITVHTQADTSSPDP\" as a signature sequence. All sequences belong to histidine acid phosphatase family as resulted from superfamily search. No conserved sequence representing 3- or 6-phytase could be identified using multiple sequence alignment. This in silico analysis might contribute in the classification and future genetic engineering of this most diverse class of phytase.</p>","PeriodicalId":11835,"journal":{"name":"Enzyme Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3523131/pdf/","citationCount":"0","resultStr":"{\"title\":\"In silico characterization of histidine Acid phytase sequences.\",\"authors\":\"Vinod Kumar, Gopal Singh, A K Verma, Sanjeev Agrawal\",\"doi\":\"10.1155/2012/845465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Histidine acid phytases (HAPhy) are widely distributed enzymes among bacteria, fungi, plants, and some animal tissues. They have a significant role as an animal feed enzyme and in the solubilization of insoluble phosphates and minerals present in the form of phytic acid complex. A set of 50 reference protein sequences representing HAPhy were retrieved from NCBI protein database and characterized for various biochemical properties, multiple sequence alignment (MSA), homology search, phylogenetic analysis, motifs, and superfamily search. MSA using MEGA5 revealed the presence of conserved sequences at N-terminal \\\"RHGXRXP\\\" and C-terminal \\\"HD.\\\" Phylogenetic tree analysis indicates the presence of three clusters representing different HAPhy, that is, PhyA, PhyB, and AppA. Analysis of 10 commonly distributed motifs in the sequences indicates the presence of signature sequence for each class. Motif 1 \\\"SPFCDLFTHEEWIQYDYLQSLGKYYGYGAGNPLGPAQGIGF\\\" was present in 38 protein sequences representing clusters 1 (PhyA) and 2 (PhyB). Cluster 3 (AppA) contains motif 9 \\\"KKGCPQSGQVAIIADVDERTRKTGEAFAAGLAPDCAITVHTQADTSSPDP\\\" as a signature sequence. All sequences belong to histidine acid phosphatase family as resulted from superfamily search. No conserved sequence representing 3- or 6-phytase could be identified using multiple sequence alignment. This in silico analysis might contribute in the classification and future genetic engineering of this most diverse class of phytase.</p>\",\"PeriodicalId\":11835,\"journal\":{\"name\":\"Enzyme Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3523131/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Enzyme Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2012/845465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/12/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/845465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/12/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
In silico characterization of histidine Acid phytase sequences.
Histidine acid phytases (HAPhy) are widely distributed enzymes among bacteria, fungi, plants, and some animal tissues. They have a significant role as an animal feed enzyme and in the solubilization of insoluble phosphates and minerals present in the form of phytic acid complex. A set of 50 reference protein sequences representing HAPhy were retrieved from NCBI protein database and characterized for various biochemical properties, multiple sequence alignment (MSA), homology search, phylogenetic analysis, motifs, and superfamily search. MSA using MEGA5 revealed the presence of conserved sequences at N-terminal "RHGXRXP" and C-terminal "HD." Phylogenetic tree analysis indicates the presence of three clusters representing different HAPhy, that is, PhyA, PhyB, and AppA. Analysis of 10 commonly distributed motifs in the sequences indicates the presence of signature sequence for each class. Motif 1 "SPFCDLFTHEEWIQYDYLQSLGKYYGYGAGNPLGPAQGIGF" was present in 38 protein sequences representing clusters 1 (PhyA) and 2 (PhyB). Cluster 3 (AppA) contains motif 9 "KKGCPQSGQVAIIADVDERTRKTGEAFAAGLAPDCAITVHTQADTSSPDP" as a signature sequence. All sequences belong to histidine acid phosphatase family as resulted from superfamily search. No conserved sequence representing 3- or 6-phytase could be identified using multiple sequence alignment. This in silico analysis might contribute in the classification and future genetic engineering of this most diverse class of phytase.