Silvia Schnyder-Candrian, Isabelle Maillet, Marc Le Bert, Lea Brault, Muazzam Jacobs, Bernhard Ryffel, Bruno Schnyder, René Moser
{"title":"中性粒细胞抑制因子选择性抑制体外内皮驱动的嗜酸性粒细胞迁移和ova诱导的变应性肺炎症气道嗜酸性粒细胞。","authors":"Silvia Schnyder-Candrian, Isabelle Maillet, Marc Le Bert, Lea Brault, Muazzam Jacobs, Bernhard Ryffel, Bruno Schnyder, René Moser","doi":"10.1155/2012/245909","DOIUrl":null,"url":null,"abstract":"<p><p>Leukocyte adhesion molecules are involved in cell recruitment in an allergic airway response and therefore provide a target for pharmaceutical intervention. Neutrophil inhibitory factor (NIF), derived from canine hookworm (Ancylostoma caninum), binds selectively and competes with the A-domain of CD11b for binding to ICAM-1. The effect of recombinant NIF was investigated. Intranasal administration of rNIF reduced pulmonary eosinophilic infiltration, goblet cell hyperplasia, and Th(2) cytokine production in OVA-sensitized mice. In vitro, transendothelial migration of human blood eosinophils across IL-4-activated umbilical vein endothelial cell (HUVEC) monolayers was inhibited by rNIF (IC(50): 4.6 ± 2.6 nM; mean ± SEM), but not across TNF or IL-1-activated HUVEC monolayers. Treatment of eosinophils with rNIF together with mAb 60.1 directed against CD11b or mAb 107 directed against the metal ion-dependent adhesion site (MIDAS) of the CD11b A-domain resulted in no further inhibition of transendothelial migration suggesting shared functional epitopes. In contrast, rNIF increased the inhibitory effect of blocking mAbs against CD18, CD11a, and VLA-4. Together, we show that rNIF, a selective antagonist of the A-domain of CD11b, has a prominent inhibitory effect on eosinophil transendothelial migration in vitro, which is congruent to the in vivo inhibition of OVA-induced allergic lung inflammation.</p>","PeriodicalId":88910,"journal":{"name":"Journal of allergy","volume":"2012 ","pages":"245909"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/245909","citationCount":"12","resultStr":"{\"title\":\"Neutrophil Inhibitory Factor Selectively Inhibits the Endothelium-Driven Transmigration of Eosinophils In Vitro and Airway Eosinophilia in OVA-Induced Allergic Lung Inflammation.\",\"authors\":\"Silvia Schnyder-Candrian, Isabelle Maillet, Marc Le Bert, Lea Brault, Muazzam Jacobs, Bernhard Ryffel, Bruno Schnyder, René Moser\",\"doi\":\"10.1155/2012/245909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Leukocyte adhesion molecules are involved in cell recruitment in an allergic airway response and therefore provide a target for pharmaceutical intervention. Neutrophil inhibitory factor (NIF), derived from canine hookworm (Ancylostoma caninum), binds selectively and competes with the A-domain of CD11b for binding to ICAM-1. The effect of recombinant NIF was investigated. Intranasal administration of rNIF reduced pulmonary eosinophilic infiltration, goblet cell hyperplasia, and Th(2) cytokine production in OVA-sensitized mice. In vitro, transendothelial migration of human blood eosinophils across IL-4-activated umbilical vein endothelial cell (HUVEC) monolayers was inhibited by rNIF (IC(50): 4.6 ± 2.6 nM; mean ± SEM), but not across TNF or IL-1-activated HUVEC monolayers. Treatment of eosinophils with rNIF together with mAb 60.1 directed against CD11b or mAb 107 directed against the metal ion-dependent adhesion site (MIDAS) of the CD11b A-domain resulted in no further inhibition of transendothelial migration suggesting shared functional epitopes. In contrast, rNIF increased the inhibitory effect of blocking mAbs against CD18, CD11a, and VLA-4. Together, we show that rNIF, a selective antagonist of the A-domain of CD11b, has a prominent inhibitory effect on eosinophil transendothelial migration in vitro, which is congruent to the in vivo inhibition of OVA-induced allergic lung inflammation.</p>\",\"PeriodicalId\":88910,\"journal\":{\"name\":\"Journal of allergy\",\"volume\":\"2012 \",\"pages\":\"245909\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2012/245909\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of allergy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2012/245909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/12/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of allergy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/245909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/12/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Neutrophil Inhibitory Factor Selectively Inhibits the Endothelium-Driven Transmigration of Eosinophils In Vitro and Airway Eosinophilia in OVA-Induced Allergic Lung Inflammation.
Leukocyte adhesion molecules are involved in cell recruitment in an allergic airway response and therefore provide a target for pharmaceutical intervention. Neutrophil inhibitory factor (NIF), derived from canine hookworm (Ancylostoma caninum), binds selectively and competes with the A-domain of CD11b for binding to ICAM-1. The effect of recombinant NIF was investigated. Intranasal administration of rNIF reduced pulmonary eosinophilic infiltration, goblet cell hyperplasia, and Th(2) cytokine production in OVA-sensitized mice. In vitro, transendothelial migration of human blood eosinophils across IL-4-activated umbilical vein endothelial cell (HUVEC) monolayers was inhibited by rNIF (IC(50): 4.6 ± 2.6 nM; mean ± SEM), but not across TNF or IL-1-activated HUVEC monolayers. Treatment of eosinophils with rNIF together with mAb 60.1 directed against CD11b or mAb 107 directed against the metal ion-dependent adhesion site (MIDAS) of the CD11b A-domain resulted in no further inhibition of transendothelial migration suggesting shared functional epitopes. In contrast, rNIF increased the inhibitory effect of blocking mAbs against CD18, CD11a, and VLA-4. Together, we show that rNIF, a selective antagonist of the A-domain of CD11b, has a prominent inhibitory effect on eosinophil transendothelial migration in vitro, which is congruent to the in vivo inhibition of OVA-induced allergic lung inflammation.