蛋白质组学样品的制备、保存和分离。

International journal of proteomics Pub Date : 2012-01-01 Epub Date: 2012-12-30 DOI:10.1155/2012/701230
Gary B Smejkal
{"title":"蛋白质组学样品的制备、保存和分离。","authors":"Gary B Smejkal","doi":"10.1155/2012/701230","DOIUrl":null,"url":null,"abstract":"In eukaryotic cells, protein synthesis occurs at the rate of 6–9 amino acid residues per second. With a median length of 360 amino acids, the synthesis of an “average” protein takes about a minute to complete [1]. At this rate, the synthesis of a single molecule of the muscle protein titin, being over 34,000 residues in length, requires over two hours to complete [2]. While this seems slow as biological processes go, the cellular requirement for protein synthesis is satisfied by the huge numbers of ribosomes, which can comprise 30% of a cell's total mass [3]. Human HeLa cells, for example, can contain over nine million ribosomes [4]. Extrapolated from the finding that as many as 80% of the ribosomes can be actively synthesizing protein in metabolically active cells [5], a single cell could theoretically generate 120,000 protein molecules per second. \n \nIn its November 2012 release statistics, UniProt/trEMBL reported 28,395,832 sequence entries in its protein database [6]. At the rate of six amino acids per second, a single eukaryotic ribosome working non-stop would require over 48 years to translate the entire database. However, there is protein evidence for only 0.05% and RNA transcript evidence for only 2.21% of the total entries [6]. With fewer than 112,000 sequence entries, Homo sapiens comprises only 0.04% of the total sequence entries. It would seem that human proteomics is not in its infancy, it is embryonic. \n \nThe number of human proteins is expected to reach into the millions. Immunoglobulins alone are encoded from 70 genes for which there are 320 possible light chain combinations and 10,530 possible heavy chain combinations resulting in 3,369,600 possible quaternary structures [7]. In even the simplest of organisms, the broad concentration of protein expression frequently spanning over nine orders of magnitude compounds the complexity of the proteomic amalgam. An undeterminable number of possible post-translational modifications that produce multiple isoforms of many proteins add another layer of complexity. For instance, there are 3778 distinct genes encoding plasma proteins of which at least 51% of these genes encode more than one protein isoform [8]. Hence, neither genomics nor transcriptomics can reliably predict the protein constituents of cells, tissues, or biological fluids. \n \nThe search for biologically important proteins of low abundance is impeded by the enormous range of protein concentrations, as exemplified in human plasma where the mass of albumin is nearly ten billion times greater than that of important signaling proteins such as the interleukins [9, 10]. The diversity of proteins, ranging from very soluble proteins in biological fluids to extremely hydrophobic ones that exist either embedded in lipid membranes or as insoluble aggregates, suggests that the total protein constituency of cells may not be isolated without bias towards or against some protein subpopulations. On the other hand, the complexity of proteomes might be selectively decreased by exploiting the bias toward specific protein subpopulations. \n \nLessons learned from early computer programmers who coined the phrase “Garbage in, garbage out”, downstream proteomics analyses are only as reliable as the upstream sample preparation. \n \n“We now have the technical ability to get the wrong answers with unprecedented speed,” commented Carolyn Compton, former Director of the National Cancer Institute, Office of Biorepositories and Biospecimen Research. “If we put the wrong stuff into the front end of our analytical pipeline, we'll pollute the scientific literature with incorrect data that will take us a long time to sort out.” [11]. \n \nThis special issue dedicates to the challenges of sample preparation in the proteomics era. This issue convenes several leaders in the field of proteomics as guest editors, authors, and reviewers whose contributions have culminated in making this a most substantive work. The articles within this Special Issue are timely and will be of particular interest to the field.","PeriodicalId":73474,"journal":{"name":"International journal of proteomics","volume":"2012 ","pages":"701230"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/701230","citationCount":"2","resultStr":"{\"title\":\"Proteomics sample preparation, preservation, and fractionation.\",\"authors\":\"Gary B Smejkal\",\"doi\":\"10.1155/2012/701230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In eukaryotic cells, protein synthesis occurs at the rate of 6–9 amino acid residues per second. With a median length of 360 amino acids, the synthesis of an “average” protein takes about a minute to complete [1]. At this rate, the synthesis of a single molecule of the muscle protein titin, being over 34,000 residues in length, requires over two hours to complete [2]. While this seems slow as biological processes go, the cellular requirement for protein synthesis is satisfied by the huge numbers of ribosomes, which can comprise 30% of a cell's total mass [3]. Human HeLa cells, for example, can contain over nine million ribosomes [4]. Extrapolated from the finding that as many as 80% of the ribosomes can be actively synthesizing protein in metabolically active cells [5], a single cell could theoretically generate 120,000 protein molecules per second. \\n \\nIn its November 2012 release statistics, UniProt/trEMBL reported 28,395,832 sequence entries in its protein database [6]. At the rate of six amino acids per second, a single eukaryotic ribosome working non-stop would require over 48 years to translate the entire database. However, there is protein evidence for only 0.05% and RNA transcript evidence for only 2.21% of the total entries [6]. With fewer than 112,000 sequence entries, Homo sapiens comprises only 0.04% of the total sequence entries. It would seem that human proteomics is not in its infancy, it is embryonic. \\n \\nThe number of human proteins is expected to reach into the millions. Immunoglobulins alone are encoded from 70 genes for which there are 320 possible light chain combinations and 10,530 possible heavy chain combinations resulting in 3,369,600 possible quaternary structures [7]. In even the simplest of organisms, the broad concentration of protein expression frequently spanning over nine orders of magnitude compounds the complexity of the proteomic amalgam. An undeterminable number of possible post-translational modifications that produce multiple isoforms of many proteins add another layer of complexity. For instance, there are 3778 distinct genes encoding plasma proteins of which at least 51% of these genes encode more than one protein isoform [8]. Hence, neither genomics nor transcriptomics can reliably predict the protein constituents of cells, tissues, or biological fluids. \\n \\nThe search for biologically important proteins of low abundance is impeded by the enormous range of protein concentrations, as exemplified in human plasma where the mass of albumin is nearly ten billion times greater than that of important signaling proteins such as the interleukins [9, 10]. The diversity of proteins, ranging from very soluble proteins in biological fluids to extremely hydrophobic ones that exist either embedded in lipid membranes or as insoluble aggregates, suggests that the total protein constituency of cells may not be isolated without bias towards or against some protein subpopulations. On the other hand, the complexity of proteomes might be selectively decreased by exploiting the bias toward specific protein subpopulations. \\n \\nLessons learned from early computer programmers who coined the phrase “Garbage in, garbage out”, downstream proteomics analyses are only as reliable as the upstream sample preparation. \\n \\n“We now have the technical ability to get the wrong answers with unprecedented speed,” commented Carolyn Compton, former Director of the National Cancer Institute, Office of Biorepositories and Biospecimen Research. “If we put the wrong stuff into the front end of our analytical pipeline, we'll pollute the scientific literature with incorrect data that will take us a long time to sort out.” [11]. \\n \\nThis special issue dedicates to the challenges of sample preparation in the proteomics era. This issue convenes several leaders in the field of proteomics as guest editors, authors, and reviewers whose contributions have culminated in making this a most substantive work. The articles within this Special Issue are timely and will be of particular interest to the field.\",\"PeriodicalId\":73474,\"journal\":{\"name\":\"International journal of proteomics\",\"volume\":\"2012 \",\"pages\":\"701230\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2012/701230\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of proteomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2012/701230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/12/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/701230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/12/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Proteomics sample preparation, preservation, and fractionation.
In eukaryotic cells, protein synthesis occurs at the rate of 6–9 amino acid residues per second. With a median length of 360 amino acids, the synthesis of an “average” protein takes about a minute to complete [1]. At this rate, the synthesis of a single molecule of the muscle protein titin, being over 34,000 residues in length, requires over two hours to complete [2]. While this seems slow as biological processes go, the cellular requirement for protein synthesis is satisfied by the huge numbers of ribosomes, which can comprise 30% of a cell's total mass [3]. Human HeLa cells, for example, can contain over nine million ribosomes [4]. Extrapolated from the finding that as many as 80% of the ribosomes can be actively synthesizing protein in metabolically active cells [5], a single cell could theoretically generate 120,000 protein molecules per second. In its November 2012 release statistics, UniProt/trEMBL reported 28,395,832 sequence entries in its protein database [6]. At the rate of six amino acids per second, a single eukaryotic ribosome working non-stop would require over 48 years to translate the entire database. However, there is protein evidence for only 0.05% and RNA transcript evidence for only 2.21% of the total entries [6]. With fewer than 112,000 sequence entries, Homo sapiens comprises only 0.04% of the total sequence entries. It would seem that human proteomics is not in its infancy, it is embryonic. The number of human proteins is expected to reach into the millions. Immunoglobulins alone are encoded from 70 genes for which there are 320 possible light chain combinations and 10,530 possible heavy chain combinations resulting in 3,369,600 possible quaternary structures [7]. In even the simplest of organisms, the broad concentration of protein expression frequently spanning over nine orders of magnitude compounds the complexity of the proteomic amalgam. An undeterminable number of possible post-translational modifications that produce multiple isoforms of many proteins add another layer of complexity. For instance, there are 3778 distinct genes encoding plasma proteins of which at least 51% of these genes encode more than one protein isoform [8]. Hence, neither genomics nor transcriptomics can reliably predict the protein constituents of cells, tissues, or biological fluids. The search for biologically important proteins of low abundance is impeded by the enormous range of protein concentrations, as exemplified in human plasma where the mass of albumin is nearly ten billion times greater than that of important signaling proteins such as the interleukins [9, 10]. The diversity of proteins, ranging from very soluble proteins in biological fluids to extremely hydrophobic ones that exist either embedded in lipid membranes or as insoluble aggregates, suggests that the total protein constituency of cells may not be isolated without bias towards or against some protein subpopulations. On the other hand, the complexity of proteomes might be selectively decreased by exploiting the bias toward specific protein subpopulations. Lessons learned from early computer programmers who coined the phrase “Garbage in, garbage out”, downstream proteomics analyses are only as reliable as the upstream sample preparation. “We now have the technical ability to get the wrong answers with unprecedented speed,” commented Carolyn Compton, former Director of the National Cancer Institute, Office of Biorepositories and Biospecimen Research. “If we put the wrong stuff into the front end of our analytical pipeline, we'll pollute the scientific literature with incorrect data that will take us a long time to sort out.” [11]. This special issue dedicates to the challenges of sample preparation in the proteomics era. This issue convenes several leaders in the field of proteomics as guest editors, authors, and reviewers whose contributions have culminated in making this a most substantive work. The articles within this Special Issue are timely and will be of particular interest to the field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Miniaturized Digestion and Extraction of Surface Proteins from Candida albicans following Treatment with Histatin 5 for Mass Spectrometry Analysis Comparative Proteomic Analysis of Differential Proteins in Response to Aqueous Extract of Quercus infectoria Gall in Methicillin-Resistant Staphylococcus aureus Optimization of Urea Based Protein Extraction from Formalin-Fixed Paraffin-Embedded Tissue for Shotgun Proteomics Label-Free Proteomic Analysis of Flavohemoglobin Deleted Strain of Saccharomyces cerevisiae S-Nitrosylation Proteome Profile of Peripheral Blood Mononuclear Cells in Human Heart Failure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1