气道高反应性的平滑肌过度收缩:先天、后天还是不存在?

Journal of allergy Pub Date : 2013-01-01 Epub Date: 2013-06-17 DOI:10.1155/2013/938046
Ynuk Bossé, Eric Rousseau, Yassine Amrani, Michael M Grunstein
{"title":"气道高反应性的平滑肌过度收缩:先天、后天还是不存在?","authors":"Ynuk Bossé, Eric Rousseau, Yassine Amrani, Michael M Grunstein","doi":"10.1155/2013/938046","DOIUrl":null,"url":null,"abstract":"Asthma symptoms are triggered or exacerbated by a range of environmental factors, such as allergens, viruses, fungi, exercise, aspirin, pollutants, and occupational irritants and sensitizers. While traditionally considering an intrinsic disease, in more recent years asthma has been viewed by many as a genetically associated environmental lung disorder with a heterogeneous pathogenesis. With the exception of the severe cases, the diagnostic signature of asthma is the reversibility of airway obstruction by agents that relax airway smooth muscle (ASM), which attests to the importance of this tissue in the pathobiology of the airflow obstruction. \n \nMost asthmatic individuals are hyperresponsive to bronchoprovocative challenge with a spasmogen (i.e., bronchoconstrictor agonist such as methacholine or histamine). Airway hyperresponsiveness (AHR) in asthmatic patients can either result from “hyperreactive airways” characterized by an excessive airway narrowing or “hyperexcitability,” where the airways become excessively sensitive to very low doses of constrictor agonists. It is believed that the abnormal narrowing of the airways (hyperreactivity) is responsible for most of the morbidity and mortality due to asthma. In either case, the role of ASM in the development of AHR remains to be further investigated. The controversial questions that remain to be answered are whether AHR seen in asthmatic patients is due to functional changes in the ASM and whether those changes actually lead a “hypercontractile” phenotype. This special issue aims to shed light on what seems to be a perdurable debate as to whether the hypercontractility of ASM characterizes AHR, whether this hypercontractile phenotype exists, and whether it is innate or acquired. Notwithstanding the potentially important associative role of airway inflammation, this special issue addresses different viewpoints by experts in the field that relate to newly identified contractile properties of ASM that may contribute to AHR when perturbed and also considers the latest advances in the search for better asthma treatments that directly target the ASM. \n \nC. D. Pascoe and coworkers set the stage for the ongoing debate by providing an enlighten historical perspective on the role that has been attributed to ASM in the pathobiology of asthma and AHR. The authors reference monographs that date backs to the 16th century and then describe pivotal developments made more recently that offer tentative links between the airway dysfunction seen in asthma and certain recognized features of ASM observed ex vivo. They also point out the rapid gain of interest and the increasing amount of research pursued in this area in the past few years.","PeriodicalId":88910,"journal":{"name":"Journal of allergy","volume":"2013 ","pages":"938046"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/938046","citationCount":"8","resultStr":"{\"title\":\"Smooth muscle hypercontractility in airway hyperresponsiveness: innate, acquired, or nonexistent?\",\"authors\":\"Ynuk Bossé, Eric Rousseau, Yassine Amrani, Michael M Grunstein\",\"doi\":\"10.1155/2013/938046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Asthma symptoms are triggered or exacerbated by a range of environmental factors, such as allergens, viruses, fungi, exercise, aspirin, pollutants, and occupational irritants and sensitizers. While traditionally considering an intrinsic disease, in more recent years asthma has been viewed by many as a genetically associated environmental lung disorder with a heterogeneous pathogenesis. With the exception of the severe cases, the diagnostic signature of asthma is the reversibility of airway obstruction by agents that relax airway smooth muscle (ASM), which attests to the importance of this tissue in the pathobiology of the airflow obstruction. \\n \\nMost asthmatic individuals are hyperresponsive to bronchoprovocative challenge with a spasmogen (i.e., bronchoconstrictor agonist such as methacholine or histamine). Airway hyperresponsiveness (AHR) in asthmatic patients can either result from “hyperreactive airways” characterized by an excessive airway narrowing or “hyperexcitability,” where the airways become excessively sensitive to very low doses of constrictor agonists. It is believed that the abnormal narrowing of the airways (hyperreactivity) is responsible for most of the morbidity and mortality due to asthma. In either case, the role of ASM in the development of AHR remains to be further investigated. The controversial questions that remain to be answered are whether AHR seen in asthmatic patients is due to functional changes in the ASM and whether those changes actually lead a “hypercontractile” phenotype. This special issue aims to shed light on what seems to be a perdurable debate as to whether the hypercontractility of ASM characterizes AHR, whether this hypercontractile phenotype exists, and whether it is innate or acquired. Notwithstanding the potentially important associative role of airway inflammation, this special issue addresses different viewpoints by experts in the field that relate to newly identified contractile properties of ASM that may contribute to AHR when perturbed and also considers the latest advances in the search for better asthma treatments that directly target the ASM. \\n \\nC. D. Pascoe and coworkers set the stage for the ongoing debate by providing an enlighten historical perspective on the role that has been attributed to ASM in the pathobiology of asthma and AHR. The authors reference monographs that date backs to the 16th century and then describe pivotal developments made more recently that offer tentative links between the airway dysfunction seen in asthma and certain recognized features of ASM observed ex vivo. They also point out the rapid gain of interest and the increasing amount of research pursued in this area in the past few years.\",\"PeriodicalId\":88910,\"journal\":{\"name\":\"Journal of allergy\",\"volume\":\"2013 \",\"pages\":\"938046\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2013/938046\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of allergy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/938046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/6/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of allergy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/938046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/6/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Smooth muscle hypercontractility in airway hyperresponsiveness: innate, acquired, or nonexistent?
Asthma symptoms are triggered or exacerbated by a range of environmental factors, such as allergens, viruses, fungi, exercise, aspirin, pollutants, and occupational irritants and sensitizers. While traditionally considering an intrinsic disease, in more recent years asthma has been viewed by many as a genetically associated environmental lung disorder with a heterogeneous pathogenesis. With the exception of the severe cases, the diagnostic signature of asthma is the reversibility of airway obstruction by agents that relax airway smooth muscle (ASM), which attests to the importance of this tissue in the pathobiology of the airflow obstruction. Most asthmatic individuals are hyperresponsive to bronchoprovocative challenge with a spasmogen (i.e., bronchoconstrictor agonist such as methacholine or histamine). Airway hyperresponsiveness (AHR) in asthmatic patients can either result from “hyperreactive airways” characterized by an excessive airway narrowing or “hyperexcitability,” where the airways become excessively sensitive to very low doses of constrictor agonists. It is believed that the abnormal narrowing of the airways (hyperreactivity) is responsible for most of the morbidity and mortality due to asthma. In either case, the role of ASM in the development of AHR remains to be further investigated. The controversial questions that remain to be answered are whether AHR seen in asthmatic patients is due to functional changes in the ASM and whether those changes actually lead a “hypercontractile” phenotype. This special issue aims to shed light on what seems to be a perdurable debate as to whether the hypercontractility of ASM characterizes AHR, whether this hypercontractile phenotype exists, and whether it is innate or acquired. Notwithstanding the potentially important associative role of airway inflammation, this special issue addresses different viewpoints by experts in the field that relate to newly identified contractile properties of ASM that may contribute to AHR when perturbed and also considers the latest advances in the search for better asthma treatments that directly target the ASM. C. D. Pascoe and coworkers set the stage for the ongoing debate by providing an enlighten historical perspective on the role that has been attributed to ASM in the pathobiology of asthma and AHR. The authors reference monographs that date backs to the 16th century and then describe pivotal developments made more recently that offer tentative links between the airway dysfunction seen in asthma and certain recognized features of ASM observed ex vivo. They also point out the rapid gain of interest and the increasing amount of research pursued in this area in the past few years.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prevalence of Skin Sensitization to Pollen of Date Palm in Marrakesh, Morocco. Exploring the Concern about Food Allergies among Secondary School and University Students in Ontario, Canada: A Descriptive Analysis. Validation of the English Version of the Scale for Psychosocial Factors in Food Allergy and the Relationship with Mental Health, Quality of Life, and Self-Efficacy A Simple Allergist-Led Intervention Improves Resident Training in Anaphylaxis Cloning and Expression of Ama r 1, as a Novel Allergen of Amaranthus retroflexus Pollen
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1