药物基因组学基因优先排序的迭代搜索和排序算法。

Q4 Pharmacology, Toxicology and Pharmaceutics International Journal of Computational Biology and Drug Design Pub Date : 2013-01-01 Epub Date: 2013-02-21 DOI:10.1504/IJCBDD.2013.052199
Rong Xu, Quanqiu Wang
{"title":"药物基因组学基因优先排序的迭代搜索和排序算法。","authors":"Rong Xu, Quanqiu Wang","doi":"10.1504/IJCBDD.2013.052199","DOIUrl":null,"url":null,"abstract":"<p><p>Pharmacogenomics (PGx) studies are to identify genetic variants that may affect drug efficacy and toxicity. A machine understandable drug-gene relationship knowledge is important for many computational PGx studies and for personalised medicine. A comprehensive and accurate PGx-specific gene lexicon is important for automatic drug-gene relationship extraction from the scientific literature, rich knowledge source for PGx studies. In this study, we present a bootstrapping learning technique to rank 33,310 human genes with respect to their relevance to drug response. The algorithm uses only one seed PGx gene to iteratively extract and rank co-occurred genes using 20 million MEDLINE abstracts. Our ranking method is able to accurately rank PGx-specific genes highly among all human genes. Compared to randomly ranked genes (precision: 0.032, recall: 0.013, F1: 0.018), the algorithm has achieved significantly better performance (precision: 0.861, recall: 0.548, F1: 0.662) in ranking the top 2.5% of genes.</p>","PeriodicalId":39227,"journal":{"name":"International Journal of Computational Biology and Drug Design","volume":" ","pages":"18-31"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6100784/pdf/nihms-984977.pdf","citationCount":"0","resultStr":"{\"title\":\"An iterative searching and ranking algorithm for prioritising pharmacogenomics genes.\",\"authors\":\"Rong Xu, Quanqiu Wang\",\"doi\":\"10.1504/IJCBDD.2013.052199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pharmacogenomics (PGx) studies are to identify genetic variants that may affect drug efficacy and toxicity. A machine understandable drug-gene relationship knowledge is important for many computational PGx studies and for personalised medicine. A comprehensive and accurate PGx-specific gene lexicon is important for automatic drug-gene relationship extraction from the scientific literature, rich knowledge source for PGx studies. In this study, we present a bootstrapping learning technique to rank 33,310 human genes with respect to their relevance to drug response. The algorithm uses only one seed PGx gene to iteratively extract and rank co-occurred genes using 20 million MEDLINE abstracts. Our ranking method is able to accurately rank PGx-specific genes highly among all human genes. Compared to randomly ranked genes (precision: 0.032, recall: 0.013, F1: 0.018), the algorithm has achieved significantly better performance (precision: 0.861, recall: 0.548, F1: 0.662) in ranking the top 2.5% of genes.</p>\",\"PeriodicalId\":39227,\"journal\":{\"name\":\"International Journal of Computational Biology and Drug Design\",\"volume\":\" \",\"pages\":\"18-31\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6100784/pdf/nihms-984977.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Biology and Drug Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJCBDD.2013.052199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/2/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Biology and Drug Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCBDD.2013.052199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/2/21 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

摘要

药物基因组学(PGx)研究旨在确定可能影响药物疗效和毒性的基因变异。机器可理解的药物基因关系知识对于许多计算 PGx 研究和个性化医疗非常重要。科学文献是 PGx 研究的丰富知识来源,而全面准确的 PGx 特定基因词典对于从科学文献中自动提取药物基因关系非常重要。在本研究中,我们提出了一种引导学习技术,根据 33,310 个人类基因与药物反应的相关性对其进行排序。该算法仅使用一个种子 PGx 基因,利用 2,000 万份 MEDLINE 摘要迭代提取共同出现的基因并对其进行排序。我们的排序方法能够在所有人类基因中准确地将 PGx 特异性基因排序到较高的位置。与随机排序的基因相比(精确度:0.032,召回率:0.013,F1:0.018),该算法在对前 2.5%的基因进行排序时取得了明显更好的性能(精确度:0.861,召回率:0.548,F1:0.662)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An iterative searching and ranking algorithm for prioritising pharmacogenomics genes.

Pharmacogenomics (PGx) studies are to identify genetic variants that may affect drug efficacy and toxicity. A machine understandable drug-gene relationship knowledge is important for many computational PGx studies and for personalised medicine. A comprehensive and accurate PGx-specific gene lexicon is important for automatic drug-gene relationship extraction from the scientific literature, rich knowledge source for PGx studies. In this study, we present a bootstrapping learning technique to rank 33,310 human genes with respect to their relevance to drug response. The algorithm uses only one seed PGx gene to iteratively extract and rank co-occurred genes using 20 million MEDLINE abstracts. Our ranking method is able to accurately rank PGx-specific genes highly among all human genes. Compared to randomly ranked genes (precision: 0.032, recall: 0.013, F1: 0.018), the algorithm has achieved significantly better performance (precision: 0.861, recall: 0.548, F1: 0.662) in ranking the top 2.5% of genes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computational Biology and Drug Design
International Journal of Computational Biology and Drug Design Pharmacology, Toxicology and Pharmaceutics-Drug Discovery
CiteScore
1.00
自引率
0.00%
发文量
8
期刊最新文献
Assessment and Validation of Emulgel Based Salicylic acid Formulation Development to Drug release and Optimization by Statistical Design EyeRIS: Image-Based Identification of Goats using Iris Advanced DEEPCNN Breast Cancer Mammogram Image Detection and Classification with Butterfly Optimization Algorithm A Unique Noise Detector Developed for the Filtering of X-Ray Images of Bone Fractures Residue Interaction Network analysis and Molecular dynamics simulation of 6K Viroporin: Chikungunya Virus Channel Proteins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1