Jie Zhang, Shiwei Ni, Yang Xiang, Jeffrey D Parvin, Yufeng Yang, Yongjian Zhou, Kun Huang
{"title":"基因共表达分析预测与结肠癌转移相关的基因畸变位点。","authors":"Jie Zhang, Shiwei Ni, Yang Xiang, Jeffrey D Parvin, Yufeng Yang, Yongjian Zhou, Kun Huang","doi":"10.1504/IJCBDD.2013.052202","DOIUrl":null,"url":null,"abstract":"<p><p>Gene Co-expression Network (GCN) analysis has been widely used for gene function and disease biomarker discovery. In this study, we present a workflow for identifying GCN associated with colon cancer metastasis. The workflow includes dense network discovery from weighted GCN followed by network activity analysis using a mutual information-based approach to identify gene networks related to metastasis. Our findings suggest several genomic regions as genetic aberrations related to colon cancer malignancy including chr11q13, 20q13, 8q24 and 14q22-23. Our work also demonstrates a novel way of interpreting gene co-expression analysis results besides functional relationships and the effectiveness of the mutual information based network analysis in detecting subtle changes between different disease states.</p>","PeriodicalId":39227,"journal":{"name":"International Journal of Computational Biology and Drug Design","volume":" ","pages":"60-71"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJCBDD.2013.052202","citationCount":"12","resultStr":"{\"title\":\"Gene Co-expression analysis predicts genetic aberration loci associated with colon cancer metastasis.\",\"authors\":\"Jie Zhang, Shiwei Ni, Yang Xiang, Jeffrey D Parvin, Yufeng Yang, Yongjian Zhou, Kun Huang\",\"doi\":\"10.1504/IJCBDD.2013.052202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gene Co-expression Network (GCN) analysis has been widely used for gene function and disease biomarker discovery. In this study, we present a workflow for identifying GCN associated with colon cancer metastasis. The workflow includes dense network discovery from weighted GCN followed by network activity analysis using a mutual information-based approach to identify gene networks related to metastasis. Our findings suggest several genomic regions as genetic aberrations related to colon cancer malignancy including chr11q13, 20q13, 8q24 and 14q22-23. Our work also demonstrates a novel way of interpreting gene co-expression analysis results besides functional relationships and the effectiveness of the mutual information based network analysis in detecting subtle changes between different disease states.</p>\",\"PeriodicalId\":39227,\"journal\":{\"name\":\"International Journal of Computational Biology and Drug Design\",\"volume\":\" \",\"pages\":\"60-71\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJCBDD.2013.052202\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Biology and Drug Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJCBDD.2013.052202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/2/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Biology and Drug Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCBDD.2013.052202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/2/21 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Gene Co-expression analysis predicts genetic aberration loci associated with colon cancer metastasis.
Gene Co-expression Network (GCN) analysis has been widely used for gene function and disease biomarker discovery. In this study, we present a workflow for identifying GCN associated with colon cancer metastasis. The workflow includes dense network discovery from weighted GCN followed by network activity analysis using a mutual information-based approach to identify gene networks related to metastasis. Our findings suggest several genomic regions as genetic aberrations related to colon cancer malignancy including chr11q13, 20q13, 8q24 and 14q22-23. Our work also demonstrates a novel way of interpreting gene co-expression analysis results besides functional relationships and the effectiveness of the mutual information based network analysis in detecting subtle changes between different disease states.